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1 About the Verification 
Problems...
Introduction

COSMOS/M software modules are continually in the process of extensive develop-
ment, testing, and quality assurance checks. New features and capabilities incorpo-
rated into the system are rigorously tested using verification examples and in-house 
quality assurance problems. All verification problems are provided to the user 
along with the software, and they are made available in the COSMMOS/M direc-
tory. There are more than 150 verification problems for analysis modules in the 
Basic System.

The purpose of this section is dual fold: to present many example problems that test 
a combination of capabilities offered in the COSMOS/M Basic System, and to pro-
vide a large number of verification problems that validate the basic modeling and 
analysis features. The first part of this manual presented several fully described and 
illustrated examples which cover few aspects of modeling and analysis limitations. 
This part provides examples on many other analysis features of the Basic System.

The input files for all verification problems are provided in separate folders 
(depending on the analysis type) in the “...\Vprobs” directory where “...” denotes 
the COSMOS/M directory.
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1-2
Folder Analysis Type

Geostar GEOSTAR modeling examples

Buckling Linearized buckling analysis
AdvDynamics Linear dynamic response analysis

Emagnetic Electromagnetic analysis

Frequency Frequency (modal) analysis
Fatigue Fatigue analysis

Nonlinear Nonlinear dynamic analysis

Static Linear static stress analysis
Thermal Thermal (heat transfer) analysis (linear)

FFE FFE modules

HFS High frequency electromagnetic simulation

To use the verification problems, enter GEOSTAR and at the GEO> prompt, exe-
cute the command Load... (FILE) from the File menu. The following pages show a 
listing of the verification problems based on analysis and element type’s.

Classification by Analysis Type

Analysis 
Type

Folder Problem Title

Linear 
Static 
Analysis

...\Vprobs\Static

S1, S2, S3A, S3B, S4, S5, S6, S7, S8, S9A, S9B,S10A, 
S10B, S11, S12, S13, S14A,S14B, S15, S16A, S16B, 
S17, S18, S19, S20, S21A, S21B, S22, S23, S24, S25, 
S26, S27, S28, S29, S29A, S30, S31, S31A, S32A, S32B, 
S32C, S32D, S32M, S33A, S33M, S34, S35A, S35B, 
S36A, S36M, S37, S38, S39, S40, S41, S42, S43, S44A, 
S44B, S45, S46, S46A, S46B, S47, S47A, S47B, S48, 
S49A, S49B, S50A, S50B, S50C, S50D, S50F, S50G, 
S50H, S51, S52, S53, S54, S55, S56, S57, S58, S58B, 
S59A, S59B, S59C, S60, S61, S62, S63, S64A, S64B, 
S65, S66, S67, S68, S69, S70, S71, S74, S75, S76, S77, 
S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, 

Buckling 
Analysis

...\Vprobs\Buckling
B1, B2, B3, B4, B5A, B5B, B6, B7A, B7B, B8, B9, B10, 
B11, B12, B13, B14, B15A, B15B 

Modal 
Analysis

...\Vprobs\Frequency

F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11A, F11B, F12, 
F13, F14, F16A, F16B, F17, F18, F19, F20A, F20B, F20C, 
F20D, F20, F20E, F20G, F20F, F21, F22, F23, F24, F25, 
F26, F27, F28
COSMOS/M Basic FEA System
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Classification by Element Type

Element 
Name

Analysis Type Problem Title

BEAM2D
Buckling
Linear Static

B10, B11, B13
S9A, S9B, S24, S41, S46, S47, S51, S52, S53, S54, S75, 
S76

BEAM3D

Buckling
Modal Analysis
Linear Static

B1, B2, B3, B6, B9
F3, F4, F5, F12, F17
S7, S22, S23, S26, S27, S28, S33A, S33M, S34, S39, S43, 
S45, S55

BOUND Linear Static NONE

ELBOW Linear Static S15, S16A, S16B

GAP Linear Static S75, S76

GENSTIF All NONE

MASS
Modal Analysis
Linear Static

F1, F5, F6
S39

PIPE
Modal Analysis
Linear Static

F6
S16A, S16B

PLANE2D

Modal Analysis
Linear Static

F2, F20A, F20B, F21, F23
S2, S5, S6, S17, S19, S38, S46, S46A, S48, S49A, S50A, 
S50B, S50C, S61, S62, S65, S66, S67, S68, S70, S76, 
S82, S83, S86

RBAR Linear Static F28

SHELL3
Buckling
Modal Analysis
Linear Static

B5
F11
S3A, S3B, S8, S30, S33A

SHELL3L Linear Static NONE

SHELL3T Modal Analysis F8, F16A

SHELL4

Buckling
Modal Analysis
Linear Static

B4, B7, B9
F7, F9, F10, F18, F27A, F27B
S20, S25, S33A, S33M, S36A, S36M, S42, S44A, S44B, 
S85

SHELL4L Linear Static S21A, S31, S43, S59B, S71
COSMOS/M Basic FEA System 1-3
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Chapter 1   About the Verification Problems...

1-4
Classification by Element Type (Concluded))

Element 
Name

Analysis Type Problem Title

SHELL4T
Modal Analysis
Linear Static

F16B
S50C

SHELL9 Linear Static S46B, S56, S57, S58, S59A, S60

SHELL9L Linear Static S21B, S29A, S31A, S59A

SHELLAX
Buckling
Modal Analysis
Linear Static

B8, B14, B15
F19, F25, F26
S18, S37, S79, S80, S81

SOLID
Modal Analysis
Linear Static

F13, F20E, F20F, F22
S10A, S10B, S11, S35A, S47, S47B, S49B, S50F, S50G, 
S77

SHELL6
Buckling
Modal Analysis
Linear Static

B5B, B7B
F7B, F11B, F20H
S6B, S20B, S42B, S50I

SOLIDL Linear Static S29, S35B, S59C

SOLIDPZ Modal Analysis F24

SPRING Modal Analysis NONE

TETRA10
Modal Analysis
Linear Static

F20D
S50E

TETRA4 Linear Static NONE

TETRA4R
Linear Static
Modal Analysis

S50H, S58B, S74
F20G

TRIANG
Modal Analysis
Linear Static

F20C
S50D, S64A, S64B, S68, S69, S78, S84

TRUSS2D
Buckling
Modal Analysis
Linear Static

B6
F14
S4, S32A, S32B, S32C, S32D, S32M, S40, S63, S76

TRUSS3D
Modal Analysis
Linear Static

F1
S1, S12, S13, S14A, S14B, S22, S26, S33A, S33M
COSMOS/M Basic FEA System
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2 Linear Static Analysis
Introduction

This chapter contains verification problems to demonstrate the accuracy of the 
Linear Static Analysis module STAR.

List of Linear Static Verification Problems

S1: Pin JointedTruss 2-6
S2: Long Thick-Walled Cylinder 2-7
S3A, S3B: Simply Supported Rectangular Plate 2-9
S4: Thermal Stress Analysis of a Truss Structure 2-10
S5: Thermal Stress Analysis of a 2D Structure 2-12
S6A, S6B: Deflection of a Cantilever Beam 2-13
S7: Beam Stresses and Deflections 2-14
S8: Tip Displacements of a Circular Beam 2-15
S9A: Clamped Beam Subject to Imposed Displacement 2-16
S9B: Clamped Beam Subject to Imposed Rotation 2-18
S10A, S10B: Bending of a Solid Beam 2-19
S11: Thermal Stress Analysis of a 3D Structure 2-21
S12: Deflection of a Hinged Support 2-22
S13: Statically Indeterminate Reaction Force Analysis 2-23
COSMOS/M Basic FEA System 2-1
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Chapter 2   Linear Static Analysis

2-2
List of Linear Static Verification Problems (Continued)

S14A, S14B: Space Truss with Vertical Load 2-24
S15: Out-of-Plane Bending of a Curved Bar 2-25
S16A, S16B: Curved Pipe Deflection 2-26
S17: Rectangular Plate Under Triangular Thermal Loading 2-28
S18: Hemispherical Dome Under Unit Moment Around Free Edge 2-29
S19: Hollow Thick-walled Cylinder Subject to Temperature and 
Pressure 2-30

S20A, S20B: Cylindrical Shell Roof 2-31
S21A, S21B: Antisymmetric Cross-Ply Laminated Plate (SHELL4L) 2-33
S22: Thermally Loaded Support Structure 2-35
S23: Thermal Stress Analysis of a Frame 2-36
S24: Thermal Stress Analysis of a Simple Frame 2-38
S25: Torsion of a Square Box Beam 2-39
S26: Beam With Elastic Supports and a Hinge 2-41
S27: Frame Analysis with Combined Loads 2-43
S28: Cantilever Unsymmetric Beam 2-45
S29A, S29B: Square Angle-Ply Composite Plate Under Sinusoidal 
Loading 2-47

S30: Effect of Transverse Shear on Maximum Deflection 2-48
S31: Square Angle-Ply Composite Plate Under Sinusoidal Loading 2-50
S32A, S32B, S32C, S32D, S32M: Substructure of a Tower 2-51
S33A, S33M: Substructure of an Airplane (Wing) 2-53
S34: Tie Rod with Lateral Loading 2-54
S35A, S35B: Spherical Cap Under Uniform Pressure (Solid) 2-56
S36A, S36B: Substructure of a Simply Supported Plate 2-58
S37: Hyperboloidal Shell Under Uniform Ring Load Around Free 
Edge 2-60

S38: Rotating Solid Disk 2-62
S39: Unbalanced Rotating Flywheel 2-63
S40: Truss Structure Subject to a Concentrated Load 2-64
S41: Reactions of a Frame Structure 2-65
COSMOS/M Basic FEA System
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List of Linear Static Verification Problems (Continued)

S42A, S42B: Reactions and Deflections of a Cantilever Beam 2-66
S43: Bending of a T Section Beam 2-67
S44A, S44B: Bending of a Circular Plate with a Center Hole 2-68
S45: Eccentric Frame 2-70
S46, S46A, S46B: Bending of a Cantilever Beam 2-71
S47, S47A, S47B: Bending of a Cantilever Beam 2-73
S48: Rotation of a Tank of Fluid (PLANE2D Fluid) 2-75
S49A, S49B: Acceleration of a Tank of Fluid (PLANE2D Fluid) 2-77
S50A, S50B, S50C, S50D, S50F, S50G, S50H, S50I: Deflection 
of a Curved Beam 2-79

S51: Gable Frame with Hinged Supports 2-80
S52: Support Reactions for a Beam with Intermediate Forces and 
Moments 2-81

S53: Beam Analysis with Intermediate Loads 2-83
S54: Analysis of a Plane Frame with Beam Loads 2-85
S55: Laterally Loaded Tapered Beam 2-86
S56: Circular Plate Under a Concentrated Load (SHELL9 Element) 2-87
S57: Test of a Pinched Cylinder with Diaphragm (SHELL9 Element) 2-89
S58A, S58B, S58C: Deflection of a Twisted Beam with Tip Force 
(SHELL9 and TETRA4R Elements) 2-91

S59A, S59B, S59C: Sandwich Square Plate Under Uniform 
Loading (SHELL9L) 2-93

S60: Clamped Square Plate Under Uniform Loading 2-95
S61: Single-Edge Cracked Bend Specimen, Evaluation of Stress 
Intensity Factor Using Crack Element 2-97

S62: Plate with Central Crack 2-98
S63: Cyclic Symmetry Analysis of a Hexagonal Frame 2-99
S64A, S64B: Cyclic Symmetry 2-100
S65: Fluid-Structure Interaction, Rotation of a Tank of Fluid 2-101
S66: Fluid-Structure Interaction, Acceleration of a Tank of Fluid 2-103
S67: MacNeal-Harder Test 2-105
S68: P-Method Solution of a Square Plate with Hole 2-106
COSMOS/M Basic FEA System 2-3
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Chapter 2   Linear Static Analysis

2-4
List of Linear Static Verification Problems (Concluded)

S69: P-Method Analysis of an Elliptic Membrane Under Pressure 2-107
S70: Thermal Analysis with Temperature Dependent Material 2-108
S71: Sandwich Beam with Concentrated Load 2-109
S74: Constant Stress Patch Test (TETRA4R) 2-110
S75: Analysis of a Cantilever Beam with Gaps, Subject to Different 
Loading Conditions 2-111

S76: Simply Supported Beam Subject to Pressure from a Rigid 
Parabolic Shaped Piston 2-113

S77: Bending of a Solid Beam Using Direct Material Matrix Input 2-115
S78: P-Adaptive Analysis of a Square Plate with a Circular Hole 2-117
S79: Hemispherical Shell Under Unit Moment Around Free Edge 2-119
S80: Axisymmetric Hyperbolic Shell Under a Cosine Harmonic 
Loading on the Free Edge 2-120

S81: Circular Plate Under Non-Axisymmetric Load 2-121
S82: Twisting of a Long Solid Shaft 2-123
S83: Bending of a Long Solid Shaft 2-125
S84: Submodeling of a Plate 2-127
S85: Plate on Elastic Foundation 2-128
S86: Plate with Coupled Degrees of Freedom 2-129
S87: Gravity Loading of ELBOW Element 2-130
S88A, S88B: Single-Edge Cracked Bend Specimen, Evaluation 
of Stress Intensity Factor Using the J-integral 2-131

S89A, S89B: Slant-Edge Cracked Plate, Evaluation of Stress 
Intensity Factors Using the J-integral 2-133

S90A, S90B: Penny-Shaped Crack in Round Bar, Evaluation of 
Stress Intensity Factor Using the J-integral 2-135

S91: Crack Under Thermal Stresses, Evaluation of Stress Intensity 
Using the J-integral 2-137

S92A, S92B: Simply Supported Rectangular Plate, Using Direct 
Material Matrix Input 2-139

S93: Accelerating Rocket 2-141
S94A, S94B, S94C: P-Method Solution of a Square Plate with Small 
Hole 2-143

S95A, S95B, S95C: P-Method Solution of a U-Shaped 
Circumferential Groove in Circular Shaft 2-146
COSMOS/M Basic FEA System
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S96A, S96B, S96C: P-Method Solution of a Square Plate with an 
Elliptical Hole 2-149
COSMOS/M Basic FEA System 2-5
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Chapter 2   Linear Static Analysis

2-6

ee 
List
TYPE:
Static analysis, truss element (TRUSS3D).

REFERENCE:
Beer, F. P., and Johnston, E. R., Jr., “Vector Mechanics for Engineers: Statics and 
Dynamics,” McGraw-Hill Book Co., Inc. New York, 1962, p. 47.

PROBLEM:
A 50 lb load is supported by three bars which are attached to a ceiling as shown. 
Determine the stress in each bar.

:

Figure S1-1

S1: Pin Jointed Truss S

GIVEN: COMPARISON OF RESULTS

Area of each bar = 1 in2

E = 30 x 106 psi
σ1-4, psi σ2-4, psi σ3-4, psi

Theory 10.40 31.20 22.90

COSMOS/M 10.39 31.18 22.91

x

2

2

6 ft

2 ft

6 ft

8 ft

4 ft

4

1
y

1

3

3

Problem Sketch and 
Finite Element Model 
COSMOS/M Basic FEA System
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Part 2   Verification Problems

ee 
List
TYPE:
Static analysis, 2D axisymmetric elements (PLANE2D).

REFERENCE:
Timoshenko, S. P. and Goodier, J., “Theory of Elasticity,” McGraw-Hill, New York, 
1951, pp. 58-60.

PROBLEM:
Calculate the radial stresses for an infinitely long, thick walled cylinder subjected to 
an internal pressure p.

GIVEN:
a = 100 in
b = 115 in
p = 1000 psi 
E = 30 x 106 psi 
ν = 0.3

MODELING HINTS:
The model is meshed with three elements through the thickness and three elements 
along the length.

COMPARISON OF RESULTS:

S2: Long Thick-Walled Cylinder S

r (Radial Distance) 
(in)

Radial Stress σr (psi)

Theory COSMOS/M

102.5 (Element 1) -802.40 -802.51

107.5 (Element 2) -447.75 -447.84

112.5 (Element 3) -139.34 -139.42
COSMOS/M Basic FEA System 2-7
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2-8
Figure S2-1

a

b

x
σ

r

4 5 6

7 8 9

1 2 3
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15
16

a

b

p

y

1 rad

Finite Element Model

Problem Sketch

x

z

y

p
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ee 
List
TYPE:
Static analysis, 3-node thin plate element (SHELL3).

REFERENCE:
Timoshenko, S. P. and Woinowsky-Krieger, “Theory of Plates and Shells,” 
McGraw-Hill Book Co., 2nd edition. pp. 143-120, 1962.

PROBLEM:
Calculate the deflection  
at the center of a simply 
supported isotropic 
plate subjected to (A) 
concentrated load F, (B) 
uniform pressure (P).

GIVEN:
E = 30,000,000 psi
ν = 0.3
h = 1 in
a = b = 40 in
F = 400 lb
p = 1 psi

MODELING HINTS:
Due to double symmetry in geometry and loads, only a quarter of the plate is 
modeled.

COMPARISON OF RESULTS:

S3A, S3B: Simply Supported Rectangular Plate S

Case X (in) Y (in)
Deflection at Node 25 (UZ)
Theory COSMOS/M

A 20 20 -0.0270230 in -0.027123 in

B 20 20 -0.00378327 in -0.0037915 in

b

a

Z

Y

X
h

1

Problem Sketch and Finite Element Model

5

21 25

F

Figure  S3-1
COSMOS/M Basic FEA System 2-9
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2-10

ee 
List
TYPE:
Linear thermal stress analysis, truss elements (TRUSS2D).

REFERENCE:
Hsieh, Y. Y. “Elementary Theory of Structures,” Prentice-Hall, Inc., 1970, pp. 200-
202.

PROBLEM:
Determine the member forces in truss stucture shown in the figure subject to a 50°  
F rise in temperature at the top chords (elements 13 and 14).

GIVEN:
E = 30 x 106 psi
Coefficient  of thermal expansion = α = 0.65 x 10-5/° F
L(ft)/A(in2) = 1for all members

COMPARISON OF RESULTS:

COSMOS/M results are calculated by listing element stress results and multiplying 
by the corresponding area.

S4: Thermal Stress Analysis of a Truss Structure S

Member Forces (kips 

Members Theory COSMOS/M Members Theory COSMOS/M

1 0 0 8 35.1 35.1

2 0 0 9 0 0

3 -21.1 -21.1 10 0 0

4 0 0 11 35.1 35.1

5 0 0 12 0 0

6 -28.1 -28.1 13 0 0

7 -28.1 -28.1 14 -21.1 -21.1
COSMOS/M Basic FEA System

http://www.cosmosm.com


Part 2   Verification Problems
Figure S4-1

14

50°  F

x8

642

753
1

13

8
11

12
10

1

9

5

32 4

7

6

4  x  @  24 ft  = 96 ft

32 ft

Y

Problem Sketch and Finite Element Model
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2-12

ee 
List
TYPE:
Linear thermal stress analysis, 2D elements (plane strain, PLANE2D).

PROBLEM:
Determine the displacements and stresses of the plane strain problem shown in 
figure due to a uniform temperature rise.
 

Figure S5-1

S5: Thermal Stress Analysis of a 2D Structure S

GIVEN:

E = 30 x 106 psi
α = 0.65 x 10-5/° F
ν = 0.25
T = 100°  F
L = 1 in

COMPARISON OF RESULTS:
Displacements at Nodes (2, 4, and 6)

Y-Displacement 
(in)

SX-Stress 
(psi)

Theory 0.001083 -26000.0

COSMOS/M 0.001083 -26000.1

1 2L

y

x
1

2

3

4

5

6

LL

Problem Sketch and Finite Element Model
COSMOS/M Basic FEA System
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ee 
List
TYPE:
Static analysis, plane stress element PLANE2D and SHELL6.

PROBLEM:
A cantilever beam is subjected to a concentrated load at the free end. Determine the 
deflections at the free end and the average shear stress.

Figure S6-1

S6A, S6B: Deflection of a Cantilever Beam S

GIVEN: COMPARISON OF RESULTS:

E = 30 x 106 psi
L = 10 in
h = 1 in
A = 0.1 in2

ν = 0
P = 1 lb
* averaged results of 
nodes at the free edge

Max. Deflection in 
the Y-direction

Shear Stress 
(psi)

Theory -0.001333 -10.0

COSMOS/M 

PLANE2D -0.001337 -10.0*

SHELL6 
(Curved) -0.0013398 -9.820667*

SHELL6 
(Assembled) -0.00072411 --8.530667*

1 102

y

2 4 6

l 3 5

22

21
x

P

h

Finite Element Model

L

t

Problem Sketch  

h

P
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ee 
List
TYPE:
Static analysis, beam elements (BEAM3D).

REFERENCE:
Timoshenko, S. P., “Strength of Materials, Part 1, Elementary Theory and 
Problems,” 3rd Ed., D. Van Nostrand Co., Inc., New York, 1965, p. 98.

PROBLEM:
A standard 30" Wide Flange beam is supported as shown below and loaded on the 
overhangs by a uniformly distributed load of 10,000 lb per ft. Determine the 
maximum stress in the middle portion of the beam and the deflection at the center of 
the beam.

MODELING HINTS:
Use consistent length units. A half-model has been used because of symmetry. 
Resultant force and moment have been applied at node 2 instead of distributed load.

Figure S7-1

S7: Beam Stresses and Deflections S

GIVEN:

Area = 50.65 in2

E = 30 x 106 psi 
p = 10,000 lb/ft

COMPARISON OF RESULTS:
At the middle of the span (node 3):

σmax psi δ inch
Theory 11400.0 0.182

COSMOS/M 11400.0 0.182

Finite Element Model

z

15"

Section a-a

10' 10'20'

CL
a

Problem Sketch

a

P P
C

21
x

3

2

L

4

y

1
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ee 
List
TYPE:
Static analysis, thin or thick shell element (SHELL3).

REFERENCE 
Warren C. Young, “Roark's Formulas for Stress and Strain,” Sixth Edition, McGraw 
Hill Book Company, New York, 1989.

PROBLEM:
Determine the deflections in X, Y direction of a circular beam fixed at one end and 
free at the other end, when subjected to a force along X direction at force end.

Figure S8-1

S8: Tip Displacements of a Circular Beam S

GIVEN:
E = 30E6 psi
ν = 0
b = 4 in
h = 1 in 
R = 10 in
F = 200 lb

COMPARISON OF RESULTS:
The loaded end.

Displacement (inch)

X Y
Theory 0.712E-2 0.99E-2

COSMOS/M 0.718E-2 0.99E-2

F/2

F/2

y

z

x

h

b

R

Problem Sketch and Finite Element Model
COSMOS/M Basic FEA System 2-15
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2-16

ee 
List
TYPE:
Static analysis, beam elements (BEAM2D).

REFERENCE
Gere, J. M. and Weaver, W. Jr., “Analysis of Framed Structures,” D. Van Nostrand 
Co., 1965.

PROBLEM:
Determine the end forces of a clamped beam due to a 1 inch settlement at the right 
end.

GIVEN:
E = 30 x 106 psi
l = 80 in
A = 4 in2

I = 1.33 in4

h = 2 in

ANALYTICAL SOLUTION:
Reaction: R = -12EI / L3

Moment: M = 6EI / L2

COMPARISON OF RESULTS:

S9A: Clamped Beam Subject 
to Imposed Displacement

S

Theory COSMOS/M

Imposed Displacement (in) -1.0 -1.0

End Shear (lb) -937.5 -937.5

End Moment (lb-in) -37,500.0 -37,500.0
COSMOS/M Basic FEA System
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Figure S9A-1

1
2 3 4 5

1.0 in

h

6

x

y

4321

Problem Sketch

Finite Element Model

L
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ee 
List
TYPE:
Static analysis, beam elements (BEAM2D).

REFERENCE:
Gere, J. M. N. and Weaver, W. Jr., “Analysis of Framed Structures,” D. Van Nostrand 
Co., 1965.

PROBLEM:
Determine the end forces of a clamped-clamped beam due to a 1 radian imposed 
rotation at the right end.

COMPARISON OF RESULTS:

Figure S9B-1

S9B: Clamped Beam Subject to Imposed Rotation S

GIVEN:
E = 30 x 106 psi
l = 80 in
A = 4 in2

I = 1.3333 in4

h = 2 in

ANALYTICAL SOLUTION:
Reaction: R = -6EI / L2

Moment: M = 4EI / L

Theory COSMOS/M

Imposed Rotation (1 rad) 1 1

End Shear -37,500 -37,500

End Moment -2,000,000 -2,000,000

φ   = 1 rad
2

L

h

Problem Sketch
COSMOS/M Basic FEA System
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ee 
List
TYPE:
Static analysis, SOLID element.

REFERENCE:
Roark, R. J., “Formulas for Stress and Strain,” 4th Edition, McGraw-Hill Book Co., 
New York, 1965, pp. 104-106.

PROBLEM:
A beam of length L and height h is built-in at one end and loaded at free end: (A) 
with a shear force F, and (B) a moment M. Determine the deflection at the free end.

GIVEN:
L = 10 in
h = 2 in
E = 30 x 106 psi
ν = 0
F = 300 lb
M = 2000 in-lb

MODELING HINTS:
Two load cases have been used (S10A, S10B).

1. Four forces equal to F/4 have been applied at nodes 21, 22, 23, and 24 in xz 
direction (S10A), and,

2. Two couples equal M/2 have been applied at nodes 21, 22, 23 and 24 (S10B).

COMPARISON OF RESULTS:
Displacement in Z-direction (in) (node 21-24):

S10A, S10B: Bending of a Solid Beam S

S10A S10B

Theory 0.00500 -0.00500

COSMOS/M 0.005007 -0.00495
COSMOS/M Basic FEA System 2-19
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2-20
Figure S10A-1

F

L

h

M

L

Case 1 Case 2

Problem Sketch

Finite Element Model
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ee 
List
TYPE:
Linear thermal stress analysis, 3D SOLID element.

PROBLEM: 
Determine the displacements of the three-dimensional structure shown below due to 
a uniform temperature rise.

Figure S11-1

S11: Thermal Stress Analysis of a 3D Structure S

GIVEN: COMPARISON OF RESULTS:

E = 3 x 107 psi
α = 0.65 x 10-5/° F
ν = 0.25
T = 100°  F
L = 1 in

X-Displacement (Nodes)

5, 6, 7, 8 9, 10, 11, 12
Theory 0.000650 0.001300

COSMOS/M 0.000650 0.001300

5

8

9

2

1

L

L

L

L

1

2

3

4

6

7

10

11

12
x,r

z,t

y,s

Problem Sketch and Finite Element Model
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ee 
List
TYPE:
Static analysis, truss element (TRUSS3D).

REFERENCE:
Timoshenko, S. P., and MacCullough, Glesson, H., “Elements of Strength of 
Materials,” D. Van Nostrand Co., Inc., 3rd edition, June 1949, p. 13.

PROBLEM:
A structure consisting of two equal steel bars, 15 feet long and with hinged ends, is 
submitted to the action of a vertical load P. Determine the forces in the members AB 
and BC along with the vertical deflection at B.

Figure S12-1

S12: Deflection of a Hinged Support S

GIVEN:
P = 5000 lbs
θ = 30°
AB = BC = 15 ft
E = 30 x 106 psi
Cross-sectional area = 0.5 in2

COMPARISON OF RESULTS:

Theory COSMOS/M

Vertical Deflection at 
B in inches 0.12 0.12

Forces in Members 
AB and BC in lbs 5000 5000

Y3
C

21

B

P

2Z

1
θθ

A

Problem Sketch and Finite Element Model
COSMOS/M Basic FEA System
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ee 
List
TYPE:
Static analysis, truss elements (TRUSS3D).

REFERENCE: 
Timoshenko, S. P., “Strength of Materials, Part 1, Elementary Theory and 
Problems,” 3rd edition, D. Van Nostrand Co., Inc., 1956, p. 26.

PROBLEM:
A prismatic bar with built-in ends is loaded axially at two intermediate cross-
sections by forces F1 and F2. Determine the reaction forces R1 and R2.

Figure S13-1

S13: Statically Indeterminate 
Reaction Force Analysis

S

GIVEN: COMPARISON OF RESULTS:

a = b = 0.3 L
L = 10 in
F1 = 2F2 = 1000 lb
E = 30 x 106 psi

R1 lbs R2 lbs

Theory 900 600

COSMOS/M 900 600

Y

X
1

2

3

4

3

2

1

Finite Element Model

F

F

a

b

R

L

1

1

2

Problem Sketch

R2
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ee 
List
TYPE: 
Static analysis, truss elements (TRUSS3D).

REFERENCE: 
Timoshenko, S. P. and Young, D. H. “Theory of Structures,” end Ed., McGraw-Hill, 
New York, 1965, pp. 330-331.

PROBLEM:
The simple space truss shown in the figure below consists of two panels ABCD and 
ABEF, attached to a vertical wall at points C, D, E, F, the panel ABCD being in a 
horizontal plane. All bars have the same cross-sectional area, A, and the same 
modulus of elasticity, E. 

Calculate: 

1. The axial force produced in the 
redundant bar AD by the vertical 
load P = 1 kip at joint A (S14A).

2. The thermal force induced in the 
bar AD if there is a uniform rise 
in temperature of 50°  F (S14B).

GIVEN:
E = 30 x 106 psi
α = 6.5 x 10-6/° F
A = 1in2

L = 4 ft

COMPARISON OF RESULTS:
For Element 2:

S14A, S14B: Space Truss with Vertical Load S

S14A S14B

Theory 56.0 lb -1259.0 lb

COSMOS/M 55.92 lb -1292.4 lb

Figure  S14-1

E

6 x

y

z

4

L

1

A

5

4

12

3

6
5

7

P

Problem Sketch and Finite 
Element Model
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ee 
List
TYPE:
Static analysis, curved elbow element (ELBOW).

REFERENCE:
Timoshenko, S. P., “Strength of Materials, Part 1, Advanced Theory and Problems,” 
3rd Edition, D. Van Nostrand Company, Inc., New York, 1956, p. 412.

PROBLEM:
A portion of a horizontal circular ring, built-in at A, is loaded by a vertical load P 
applied at the end B. The ring has a solid circular cross-section of diameter d. 
Determine the deflection at end B, and the maximum bending stress.

MODELING HINTS:
COSMOS/M does not yet have a curved beam element, although this element will 
be incorporated into the program shortly. Hence, the curved elbow element is used 
to model this problem. Therefore, it is necessary to use equivalent thickness t which 
is equal to the radius of the solid rod.

Figure S15-1

S15: Out-of-Plane Bending of a Curved Bar S

GIVEN: COMPARISON OF RESULTS

P = 50 lb
r = 100 in
d = 2 in
E = 30 x 106 psi
α = 90°
ν = 0.3

δz, inch σBend, psi

Theory -2.648 6366.0

COSMOS/M -2.650 6366.2

z

d

y

B

p rα

A x

x
3

z
y

2

1

1

Problem Sketch Finite Element Model
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ee 
List
TYPE:
Static analysis, elbow element (ELBOW).

REFERENCE:
Blake, A., “Design of Curved Members for Machines,” Industrial Press, New York, 
1966.

PROBLEM:
Calculate deflections x and y for a curved pipe shown in the figure subjected to:

1. Moment Mz = 3 x 106 lb-in and internal pressure p = 900 psi (S16A).
2. Internal pressure p = 900 psi (S16B).

GIVEN:
E = 30 x 106 psi
ν = 0.3
R = 72 in
Thickness = 1.031 in
Outer diameter of pipe = 20 in

COMPARISON OF RESULTS:
Blake gives the following results for a 90 curved member. These results do not 
include the effects of distortion of the cross-section and internal pressure.

δy = Mz R2/EI = 0.187039 in
δy = Mz R2/EI (P/2-1) = 0.106761 in

The pipe flexibility factor is given by

Kp = 1.65/h{1 + 6P/Eh) (R/t)4/3}, where h = tR/r2

for p = 900 psi, Kp = 1.8814761

To obtain the nodal deflections for case l, the deflections calculated by Blake's 
formulas must be multiplied by kp and added to the deflections produced by the 
internal pressure.

S16A, S16B: Curved Pipe Deflection S
COSMOS/M Basic FEA System

http://www.cosmosm.com


Part 2   Verification Problems
S16A

S16B

Figure S16A-1

δx, inch δy, inch

Theory 0.37035 0.20515

COSMOS/M 0.37034 0.20515

δx, inch δy, inch

Theory 1.84356 x 10-2 4.2873 x 10-3

COSMOS/M 1.84355 x 10-2 4.28043 x 10-3

2

x

M z

1

R

3

y

R = Constant

Problem Sketch and Finite Element Model

1
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ee 
List
TYPE:
Linear thermal stress analysis, 2D elements (plane stress analysis, PLANE2D).

REFERENCE:
Johns, D. J., “Thermal Stress Analysis,” Pergamon Press, Inc., 1965, pp. 40-47.

PROBLEM:
A finite rectangular plate is subjected to a temperature distribution in only one 
direction as shown in figure. Determine the normal stress at point A.

GIVEN:
a = 15 in
b = 10 in
To = -100 ° F
t = 1 in
E = 30 x 106 psi
αc = 0.65 x 10-5 in/in/° F

MODELING HINTS:
Due to the double 
symmetry in geometry and 
loading, only one quarter 
of the plate was analyzed.

COMPARISON OF RESULTS:

S17: Rectangular Plate Under 
Triangular Thermal Loading

S

σxx / (E α To) (Node 45)

Reference 
Method 1 0.42

Method 2 0.40

COSMOS/M 0.437

Same Boundary Condition

S
am

e
 B

o
u

n
d

ar
y 

C
o

n
d

iti
o

n

x

A

y

Figure  S17-1
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ee 
List
TYPE:
Static linear analysis, axisymmetric shell element (SHELLAX).

REFERENCE:
Zienkiewicz, O. C. “The Finite Element Method,” Third edition, McGraw-Hill Book 
Co., New York, 1983, p. 362.

PROBLEM:
Determine the horizontal displacement of a hemispherical shell under uniform unit 
moment around the free edge.

MODELING HINTS:
Nodal spacing is shown in the Figure. For convenience, cylindrical coordinate 
system is chosen for node generation. It is important to note that nodal load is to be 
specified per unit radian which in this case is 50 in lb/rad.

Figure  S18-1

S18: Hemispherical Dome Under 
Unit Moment Around Free Edge

S

GIVEN:
R = 100 in
r = 50 in
E = 1 x 107 psi
ν = 0.33
t = 1 in
M = 1 in lb

COMPARISON OF RESULTS:

Horizontal Displacement 
(Node 29) (inch)

Reference 1.580 E-5

COSMOS/M 1.589 E-5

θ

Nodal Spacing

14 @ 0.5°   interval
7 @ 0.5°   interval

3 @ 2.0°   interval
4 @  10.0°   interval

5

Finite Element Model

y

HH

R
30

r

Problem Sketch

t

y

x x

M M

r
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ee 
List

Figure  

Pro
TYPE:
Static analysis, 2D axisymmetric element (PLANE2D).

REFERENCE:
Timoshenko, S. P. and Goodier, “Theory of Elasticity,” McGraw-Hill Book Co., 
New York, 1961, pp. 448-449.

PROBLEM:
The hollow cylinder in plane strain is subjected to two independent load conditions.

1. An internal pressure. 
2. A steady state axisymmetric temperature distribution given by the equation:

    T(r) = (Ta/ln(b/a)) · ln(b/r) where Ta is the temperature of the inner surface
 and T(r) is the temperature at any radius. 

S19: Hollow Thick-walled Cylinder Subject 
to Temperature and Pressure

S

GIVEN:
E = 30 x 106 psi 
a = 1 in
b = 2 in
ν = 0.3
α = 1 x 10-6 in/(in ° F)
Pa = 100 psi
Ta = 100 ° F

COMPARISON OF RESULTS:
At r = 1.2875 in (elements 13, 15)

σr, psi σθ, psi

Theory) -398.34 -592.47

COSMOS/M -398.15 -596.46

S19-1

a

T(r)

Pa
x

y

b

0.1

blem Sketch Finite Element Model

a

b

Ta
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ee 
List
TYPE:
Static analysis, shell element (SHELL4, SHELL6).

REFERENCE:
Pawsley, S. F., “The Analysis of Moderately Thick to Thin Shells by the Finite 
Element Method,” Report No. USCEM 70-l2, Dept. of Civil Engineering, 
University of California, l970.

PROBLEM:
Determine the vertical deflections across the midspan of a shell roof under its own 
weight. Dimensions and boundary conditions are shown in the figure below.

GIVEN:
r = 25 ft
E = 3 x 106 psi
ν = 0
Shell Weight = 90 lbs/sq ft

MODELING HINTS:
Due to symmetry, a quarter of the shell is considered for modeling. The distributed 
force (self weight) is lumped at the nodes.

COMPARISON OF RESULTS:
Vertical Deflection at Midspan of free edge (Node 25):

S20A, S20B: Cylindrical Shell Roof S

δx, (inch)

Theory -0.3024

COSMOS/M 

SHELL4 -0.3036

SHELL6 
(Curved) -0.24580

SHELL6 
(Assembled) -0.29353
COSMOS/M Basic FEA System 2-31
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Figure S20-1

Figure S20-2

25 ft

25 ft
Free Edge

Free Edge

v = 
w = 0

t = 0.25 ft

v = w = 0

40°
40°

Y

Z

U
V

W

1

5

21

25

X

Problem Sketch and Finite 
Element Model

r

0.18961

0.30365

-.2

0.07423

0.01335

0.004676

-.1

-.3

.1.1

-.1

-.2

-.3

W

θ

COSMOS/M

EXACT
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ee 
List
TYPE:
Static analysis, composite shell element (SHELL4L, SHELL9L).

REFERENCE:
Jones, Robert M., “Mechanics of Composite Materials,” McGraw-Hill, New York, 
l975, p. 256.

PROBLEM:
Calculate the maximum deflection of a simply supported antisymmetric cross-ply 
laminated plate under sinusoidal load. The plate is made up of 6-layers and the 
material in each layer is orthotropic.

GIVEN:
a = l00 in
b = 20 in
h = l in
Ea = 40E6 psi
Eb = lE6 psi
νab = 0.25
Gab = Gac = Gbc = 5E5 psi
For each layer, pressure loading = cos π x/a · cos π y/b

MODELING HINT:
Due to symmetry, a quarter of the plate is considered for modeling.

S21A, S21B: Antisymmetric Cross-Ply 
Laminated Plate (SHELL4L)

S

COSMOS/M Basic FEA System 2-33
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COMPARISON OF RESULTS: 

Figure S21-1

Maximum 
Deflection (in)

Theory 0.105E-2

COSMOS/M 
4-nod shell 0.104E-2

9-node shell 0.111E-2

Y

X

h

a

1 5

Problem Sketch and Finite Element Model

b

21 25

Z
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ee 
List
TYPE:
Static, thermal stress analysis, truss and beam elements (TRUSS3D, BEAM3D).

REFERENCE:
Timoshenko, S. P., “Strength of Materials, Part l, Elementary Theory and Problems,” 
3rd Ed., D. Van Nostrand Co., Inc., l956, p. 30.

PROBLEM:
Find the stresses in the copper and steel wire structure shown below. The structure 
is subjected to a load Q and a temperature rise of l0°  F after assembly.

MODELING HINTS:
Length and spacing between wires are arbitrarily selected. Truss element is used for 
elements number (l), (2), and (3), and the beam element for elements (4) and (5). 
Beam type and material are arbitrarily selected.

Figure S22-1

S22: Thermally Loaded Support Structure S

GIVEN:
Cross-sections area = 0.l in2

Q = 4000 lb
αc = 92 x l0 in/in - ° F
αs = 70 x l0 in/in - ° F
Ec = l6 x l06 psi
Es = 30 x l06 psi

COMPARISON OF RESULTS:

σsteel, psi σcopper, psi

Theory 19695.0 10152.0

COSMOS/M 19704.2 10147.9

1 2 3

4 5 6

y

x

Q

coppersteelcopper

4 5

1 23

Problem Sketch

Finite Element Model

RIGID BEAM

20"

10" 10"
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ee 
List
TYPE:
Linear thermal stress analysis, beam elements (BEAM3D).

REFERENCE:
Rygol, J., “Structural Analysis by Direct Moment Distribution,” Gordon and Breach 
Science Publishers, New York, l968, pp. 292-294.

PROBLEM:

 

S23: Thermal Stress Analysis of a Frame S

An irregular 
frame subjected 
to differential 
temperature. 
Find member 
end moments.

Member Specifications

Member d (ft) b (ft) Ar-r (ft) lt-t (ft)

1 1.5 1.5 2.25 0.422

2 2.25 1.25 2.8125 1.187

3 2.0 1.5 3.0 1.0

4 2.5 1.25 3.125 1.628

5 2.0 1.5 3.0 1.0

GIVEN:

E = 192857 tons/ft2

α = 0.0000l ft/ft° C

COMPARISON OF RESULTS:
Moments (lb-in):

Member No. COSMOS/M Reference
Solution

1 -17.96 -17.96

2 +17.96
-42.87

+17.96
-42.96

3 +38.73
-41.92

+38.64
-41.96

4 +84.79
-82.61

+84.92
-82.61

5 -57.50
+82.61

-57.40
+82.61
COSMOS/M Basic FEA System
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Figure S23-1

Figure S23-2
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ee 
List
TYPE:
Linear thermal stress analysis, beam elements (BEAM2D).

PROBLEM:
Determine displacements and end forces of the frame shown in the figure below due 
to temperature rise at the nodes and thermal gradients of members as specified 
below.

COMPARISON OF RESULTS: 
Displacements at node 2 (in):

Figure S24-1

S24: Thermal Stress Analysis of a Simple Frame S

GIVEN:
E = 30,000 kips/in2

α = 0.65 x l0 in/in/° F

Element 
No. 

Difference in Temperature (° F)

S-dir T-dir
1 72 0

2 0 13.5

δx δy

Theory -0.0583 0.1157

COSMOS/M -0.0583 0.1168

2

SSSSSeeeeeccccctttttiiiiiooooonnnnn     

50° F100° F

50° F

A

B

B

A

240"

1

2

x

120"

1

y

Problem Sketch and Finite Element Model

3

width
= 5"

t

depth  

s

SSSSSeeeeeccccctttttiiiiiooooonnnnn     

(y)

(z)

t (z)

s(y)

width 
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depth  
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ee 
List
TYPE:
Static analysis, shell elements (SHELL4).

REFERENCE: 
Timoshenko, S. P., and Goodier, J. N., “Theory of Elasticity,” McGraw-Hill, New 
York, 1951, p. 299.

PROBLEM:
Find the shear stress and the angle of twist for the square box beam subjected to a 
torsional moment T. 

GIVEN:
E = 7.5 psi
ν = 0.3
t = 3 in
a = 150 in
L = 1500 in
T = 300 lb in

COMPARISON OF RESULTS: 
r

* θ is calculated as: 

θ = Sin-1(resultant displacemet of node 25/distance from node 25 to the center of the cross   
section)

S25: Torsion of a Square Box Beam S

Shear Stress τ  psi Rotation θ*, rad

Theory 0.00222 0.0154074

COSMOS/M 0.0021337 (average) 0.0154035*
COSMOS/M Basic FEA System 2-39
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Figure S25-1
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ee 
List
TYPE:
Static analysis, beam and truss elements (TRUSS3D, BEAM3D).

REFERENCE:
Beaufait, F. W., et. al., “Computer Methods of Structural Analysis,” Prentice-Hall, 
Inc., New Jersey, l970, pp. l97-2l0.

PROBLEM:
The final end actions of the members and the reactions of the supports resulting from 
the applied loading are to be determined for the structural system described in the 
figure below. At the beam-column connection, joint 3, the beam is continuous and 
the column is pin-connected to the beam.

GIVEN:
Cross-sectional area of beams = A1 = A2 = 0.125 ft2

Moment of inertia of beams = I1 = I2 = 0.263 ft4

Cross-sectional area of column = A3 = 0.175 ft2

Moment of inertia of column = I3 = 0.193 ft4
E = 1.44 x 104 kip/ft2

K (spring stiffness) = l200 kips/ft

COMPARISON OF RESULTS:

S26: Beam With Elastic Supports and a Hinge S

Node 2 Node 4 Node 5

Reference

δx (10-3 ft)

δy (10-3 ft)

θz (10-3 rad)

1.0787

1.7873

0.0992

 1.0787

-4.8205

 0.3615

 1.0787

-0.1803

-0.4443

COSMOS/M   
δx (10-3 ft)

δy (10-3 ft)

θz (10-3 rad)

1.0794

1.7869

0.0992

 1.0794

-4.8205

 0.3615

 1.0794

-0.1803

-0.4443
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Figure S26-1

Figure S26-2
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Problem Sketch and Finite Element Model

2

1

5k

15k

2.1k  
(2.144)

2.1k  
(2.144)

51.4  ft-k
(51.46)

9.2 k
(9.215)

5.8k
(5.785)

5.8k
(5.785)

11.3k
(11.36)

5k
(5)

5.8k
(5.785)

30.0 ft-k
(30.0)
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ee 
List
TYPE:
Static analysis, beam elements (BEAM3D).

REFERENCE:
Laursen, Harold I., “Structural Analysis,” McGraw-Hill Book Co., Inc., New York, 
1969, pp. 310-312.

PROBLEM:
Determine the forces in the beam members under the loads shown in the figure. 
Consider two separate load cases represented by the uniform pressure and the 
concentrated force. Set up the input to solve each one individually and then combine 
them together to obtain the final result.

GIVEN:
Iyy = Izz = 0.3215 ft4 
I = 0.6430 ft4

A1 = 3.50 ft2

A2,3 = 4.40 ft3 

A4 = 2.79 ft2

E = 432 x 104 K/ft2

Areas of members were made to be larger than the actual area in order to neglect 
axial deformation.

COMPARISON OF RESULTS:
The results are shown in the figure below with COSMOS/M results shown in 
parentheses.

S27: Frame Analysis with Combined Loads S
COSMOS/M Basic FEA System 2-43
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Figure S27-1

Figure S27-2
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ee 
List
TYPE:
Static analysis, 3D beam element (BEAM3D).

REFERENCE:
Boresi, A. P., Sidebottom, O. M., Seely, F. B., Smith, J. O., “Advanced Mechanics 
of Materials,” John Wiley and Son, Third Edition, 1978.

PROBLEM:
An unsymmetric cantilever beam is subjected to a concentrated load at the free end. 
Determine the tip displacement of the beam, the end forces and the stress at y = 8, 
z = -2 at the clamped end.

GIVEN:

COMPARISON OF RESULTS:

S28: Cantilever Unsymmetric Beam S

E = 2 x 107 N/cm2 

Fy = -8 N 
h1 = 4 cm 
b1 = 2 cm 
L = 500 cm
Fz = -4 N 
h2 = 8 cm 

b2 = 6 cm
A = 19 cm2 
Iyy = 100.3 cm4

Izz = 278.3 cm4 

Iyz = 97.3 cm4

Ixx = J = 6.333 cm4

t = 1 cm

Theory COSMOS/M
Node 6

   Translation in Y Dir (cm)
   Translation in Z Dir (cm)
   Rotation about X Axis (rad)

-0.1347
-0.2140

0

-0.1346
-0.21364

0

Node 1
   Moment about Y Axis (N-cm)
   Shear in Z Dir (N)
   Stress at Y = 8, Z = 2

-2000.0
4.0

155.74 Tension

-2000.0
4.0

155.8 Tension
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Figure S28-1

S.C.

Unsymmetric Beam Structure

L

Fz

Fy

b
2 1

h

h

t

Y

C.G.

b

Cross Section

Problem Sketch

Z

1 2 3 4 5 6

7

Finite Element Model

X

Y

2

1
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ee 
List
TYPE:
Static analysis, composite shell (SHELL9L), and solid element (SOLIDL).

REFERENCE: 
Jones, Robert M., “Mechanics of Composite Materials,” McGraw-Hill, N. Y., l975, 
p. 258.

PROBLEM: 
Calculate the maximum deflection of a simply supported square antisymmetric 
angle-ply under SINUSOIDAL loading. The plate is made up of 6 layers, where the 
top layer material axis orientation makes 45 degree angle with x-axis. To impose 
simply-supported boundary conditions, 2 layers of composite solid elements (each 
has 3 layers of different 
material orientation) 
through the thickness 
are required.

GIVEN: 
a = b = 20 in
Ea = 40E6 psi
h = 0.01 in
Eb = lE6 psi
ν = 0.25
Gab = Gac = Gbc = 5E5 psi
p = cos (π x/a) cos (π y/b)
po = 1E-3

COMPARISON OF RESULTS:

S29A, S29B: Square Angle-Ply Composite 
Plate Under Sinusoidal Loading

S

Max. Deflection
Reference Solution 0.256

COSMOS/M 
SOLIDL 0.258

SHELL9L 0.258

b

a

Z

X

Y

h

55

5

51 71

21
75

25

Problem Sketch and 
Finite Element Model

Figure  S29-1
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ee 
List
S

TYPE:
Static analysis, shell elements (SHELL3).

REFERENCE:
Pryor, Charles W., Jr., and Barker, R. M., “Finite Element Bending Analysis of 
Reissner Plates,” Engineering Mechanics Division, ASCE, EM6, December, l970, 
pp. 967-983.

PROBLEM:
Find the effect of transverse shear on maximum deflection of an isotropic simply 
supported plate subjected to a constant pressure, q.

GIVEN:

MODELING HINTS:
The input data corresponds to h = 0.1008 and the other inputs can be obtained by 
changing the thickness in the given input data. Due to symmetry, only one quarter of 
the plate is considered.

COMPARISON OF RESULTS:

S30: Effect of Transverse Shear 
on Maximum Deflection

S

a = b = 24 in
E = 30E6 psi

H = varies according to 
thickness ratio (H/a)

ν = 0.3
q = 30 psi

Thickness 
Ratio H/a Thickness H

β Coefficient* Difference 
(%)Reissner Theory COSMOS/M

0.000042 0.001008 0.04436 0.04438** 0.045

0.00042 0.01008 0.04436 0.04438** 0.045

0.0042 0.1008 0.04436 0.04438** 0.045

0.05 1.20 0.044936 0.044772 *** 0.36

0.1 2.40 0.046659 0.046510 *** 0.32

0.15 3.60 0.049533 0.049405 *** 0.26

0.2 4.80 0.053555 0.053458 *** 0.180

0.25 6.00 0.058727 0.058669 *** 0.10

0.3 7.20 0.065048 0.065038 *** 0.02

*β = EH3Wmax /qa4     **Thin Shell (SHELL3)   **Thick Shell (SHELL3T)
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Figure  S30-1

Figure S30-2

b

a

Z

Y

X

H

Problem Sketch

q

6.0

Present Finite Element

Reissner's Theory

Classical Theory

0.0
0.30.05

1.0

Thickness Ratio, H/a

Coefficient, βx10 2-

b = 
Wmax

qa4

0.0
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ee 
List
TYPE:
Static analysis, shell element (SHELL4L).

REFERENCE:
Jones, Robert M., “Mechanics of Composite Materials,” McGraw Hill, N. Y., l975, 
p. 258.

PROBLEM:
Calculate the maximum deflection of a simply supported square antisymmetric 
angle-ply under sinusoidal loading. The plate is made of 4-layers where the top layer 
material axis orientation makes l5 degree angle with the X-axis.

GIVEN:
a = b = 20 in
h = 1 in
Ea = 40E6 psi
Eb = 1E6 psi
ν = 0.25
Gab = Gac 

= Gbc 
= 5E5 psi

p = cos (π x/a) 
    cos (π y/b)

COMPARISON OF RESULTS:

S31: Square Angle-Ply Composite
Plate Under Sinusoidal Loading

S

Wmax (inch)

Theory 4.24E-4

COSMOS/M 4.40E-4

Figure  S31-1

Z
Y

X

h

a

1

2521

5

Problem Sketch and Finite Element Model

b
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ee 
List
TYPE:
Static analysis, substructuring using truss elements (TRUSS2D).

PROBLEM:
Determine the deflections of a tower loaded at top, using multi-level substructures.

GIVEN:

COMPARISON OF RESULTS: 

S32A, S32B, S32C, S32D, S32M: 
Substructure of a Tower 

S

E = 10 x l06 psi
P = 1000 lb
h = l00 in
L = 30 in

Cross-sectional areas of vertical 
and horizontal bars = l in2

Cross-sectional areas of diagonal 
bars = 0.707 in2

Node Number Deflection (10-3 inch)

Full 
Structure

Sub-
structure

COSMOS/M Using 
Full Structure

COSMOS/M Using 
Substructure

X Y X Y
1 1(A) 0 0 0 0

2 5(A) 7.9761 9.1679 7.9761 9.1678

9 5(B) 14.6226 25.3632 14.6226 25.3631

13 5(C) 19.9360 46.8896 19.9359 46.8893

17 5(M) 23.9168 71.9909 23.9167 71.9905

21 3(D) 26.5878 99.3979 26.5877 99.3973

4 4(A) -2.1815 3.4329 -2.1815 3.4328

6 2(B) -4.0240 8.9940 -4.0239 8.9940

10 2(C) -6.7108 25.1829 -6.7108 25.1828

14 2(M) -8.0642 46.7075 -8.0641 46.7072

18 6(M) -8.0834 71.7683 -8.0833 71.7678

22 4(D) -6.7458 98.0790 -6.7457 98.0784
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Figure S32A-1

1

3

5

9

13

17

2122

18

14

10

6

2

Problem Sketch
(Full Structure)

h

L

1

4 3

2

(D) Super Element # 4 - Level 

12

34

56

(B) Super Element #2 - Level 2

8

2 1

34

56

7

(M) Main Element

12

34

56

(C) Super Element #3 - Level 1

Finite Element Models

PP

P

4

78

1112

1516

1920

Super Nodes

12

34

56

(A) Super Element #1 - Level 3
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ee 
List
TYPE:
Static analysis, substructuring using shell, beam and truss elements (SHELL4, 
BEAM3D, TRUSS3D).

PROBLEM:
By using substructure method, determine the deflection of an airplane through the 
assembly of the calculations concerning separate parts, of the plane.

COMPARISON OF RESULTS:

Figure S33A-1

S33A, S33M: Substructure of an Airplane (Wing) S

Node 
Number

Deflection (Z-Direction) (inch)

COSMOS/M Using 
Full Structure

COSMOS/M Using 
Substructure

16 10.100 10.178

17 8.0671 8.1024

18 13.800 13.894

19 10.666 10.708

20 8.7693 8.9513

21 12.276 12.958

45 46 47

16'

P

60'

Problem Sketch
(Full Structure)

45 46 47

Note:  Nodes 
with        are 
Super Nodes
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ee 
List
TYPE:
Static analysis, stress stiffening, beam elements (BEAM3D).

REFERENCE:
Timoshenko, S. P., “Strength of Materials, Part II, Advanced Theory and Problems,” 
3rd Edition, D. Von Nostrand Co., Inc., New York, l956, p.42.

PROBLEM:
A tie rod subjected to the action of a tensile force S and a uniform lateral load q. 
Determine the maximum deflection z, and the slope at the left end. In addition, 
determine the same two quantities for the unstiffened tie rod (S = 0). 

GIVEN:
L = 200 in
E = 30E6 psi
S = 2l,972.6 lb
q = l.79253 lb/in
b = h = 2.5 in

CALCULATED INPUT: 
Area = 6.25 in2 

l = 3.2552 in4

MODELING HINTS:
Due to symmetry, only one-half of the beam is modeled.

S34: Tie Rod with Lateral Loading S
COSMOS/M Basic FEA System
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COMPARISON OF RESULTS:

S ≠ 0 (Stiffened)

S = 0 (Unstiffened)

Figure S34-1

Zmax, in θ rad

Theory -0.2 0.0032352

COSMOS/M -0.19701 0.0031776

Zmax, in θ rad

Theory -0.382406 0.006115

COSMOS/M -0.37763 0.0060229

b

L

h

q

SZmax

θ

Problem Sketch

432

1

Z Y

L/2

1 2 3 4 5
X

Finite Element Model

S
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ee 
List
TYPE:
Static analysis, solid and composite solid elements (SOLID, SOLIDL).

REFERENCE:
Reddy, N. J. “Exact Solutions of Moderately Thick Laminated Shells,” J. Eng. 
Mech. Div. ASCE, Vol. 110, (1984), pp. 794-809.

PROBLEM:
Calculate the center deflection of a simply supported spherical cap under uniform 
pressure (q = 1.) in the direction normal to the cap surface. To impose simply-
supported boundary conditions by solid elements, 2 layers of elements through the 
thickness are required.

Two types of material properties are being tested, each by a different solid element.

A. Isotropic material is handled by SOLID element (S35A).
B. Composite material, 4 layers with the orientation 0° /90° /90° /0° , is analyzed by 

SOLIDL element (S35B). The lower layer of element is modeled by 2 layers of 
material orientation 0° /90°  and the upper one is by 90° /0° .

To capture the geometry of a curved surface by a bi-linear shape function accurately, 
at least 8 elements per side have to be used. The model used below is an 8x8x2 mesh.

GIVEN:

S35A, S35B: Spherical Cap Under 
Uniform Pressure (Solid)

S

Geometry:

R = 96
h = 0.32 in
Length of side a =b = c = d = 32 in

Material Properties:

1. S35A: Isotropic
 E = 1E7 psi
 ν = 0.3

2. S35B: Composite 0° /90° /90° /0°
 Ex = 25E6 psi
 Ey = Ez = 1E6 psi
 νxy = 0.25
 νyz = νxy = 0
 Gyz = 0.2E6 psi
 Gxy= Gxz = 0.5E6 psi
COSMOS/M Basic FEA System

http://www.cosmosm.com


Part 2   Verification Problems
MODELING HINTS:

Boundary Conditions

Due to symmetry:

1. All nodes on plane A, Uy = 0
2. All nodes on plane B, Ux = 0

Simply supported:

1. All nodes on side C, radial displacement
= 0, Disp. on plane C = 0

2. All nodes on side D, radial displacement
= 0, Disp. on plane D = 0

COMPARISON OF RESULTS:

Element Wmax (inch)

(1) Isotropic Exact 
SOLID

0.3139E-2
0.3232E-2

(2) Composite Exact 
SOLIDL

0.199E-1
0.2007E-1

243

a

cd

1

sym.

9

162
81

R

PLANE CPLANE D

PLANE A

X
Y

Z

b

PLANE D

PLA
NE C

Problem Sketch and Finite Element Model

PLANE B

163

82

h

90

171

sym.

154

73

235

Figure  S35A-1
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ee 
List
TYPE:
Static analysis, substructuring using plate elements (SHELL4).

REFERENCE:
Timoshenko, S., “Theory of Plates and Shells,” McGraw-Hill, New York, 1940, p. 
113-198.

PROBLEM:
Calculate the deflections of a simply supported isotropic plate subjected to uniform 
pressure p using the substructuring technique. Nodes 11 through 15 are super nodes 
which connect the substructure to the main structure.

GIVEN:
E = 30 x 10 psi 
ν = 0.3 
h = 0.5 in
p = 5 psi 
a = 16 in
b = 10 in

MODELING HINTS:
Due to symmetry, a quarter of a plate is taken for modeling.

COMPARISON OF RESULTS:
Timoshenko gives the expression for deflection w in the z-direction with origin at 
the corner of the plate.

S36A, S36M: Substructure of a 
Simply Supported Plate

S

COSMOS/M Basic FEA System
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Figure S36A-1

Node No. X
(inch)

Y
(inch)

W (inch)

Theory COSMOS/M
1 0 0 0.0012103 0.00121329

2 2 0 0.0011338 0.00113636

3 4 0 0.0009043 0.00090247

4 6 0 0.0005150 0.00051044

16         17        18        19        20         6            7          8          9          10         

11         1 2         13       14        15         21           22        23        24       25         

Z

Y

X5

h

1

b

25

a

Problem Sketch

1            2           3         4           5         11        1 2       13        14        15         

(A) Main Structure (B) Substructure

Finite Element Models

21

P
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ee 
List
TYPE:
Static analysis, axisymmetric shell elements (SHELLAX).

REFERENCE:
William Weaver, Jr., and Paul R. Johnston, “Finite Elements for Structural 
Analysis,” Prentice-Hall, Inc., l984, p. 275.

PROBLEM:
Determine the horizontal displacement of a hyperboloidal shell under uniform ring 
load around free edge.

GIVEN:

Equation of the hyperboloid:

X2 = 0.48 (Y - H0)2 + R2

MODELING HINTS: 
Nodes at the top of the tower are spaced closely because of the concentrated ring 
load. Nodal spacing is as follows:

And it is to be noted that the ring load should be input per radian length, since the 
radius at the top of the shell is 865.3323 in, the load is 865.33 kip/rad.

S37: Hyperboloidal Shell Under Uniform 
Ring Load Around Free Edge 

S

R0 = 600 in
R1 = l200 in
H = 2400 in
H0 = l500 in

t = 8 in
E = 3000 kip/sq in
ν = 0.3
P = l kip/in

Nodes 1-11 11-21 21-29 29-39

Dy (in) 10 20 75 150
COSMOS/M Basic FEA System
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COMPARISON OF RESULTS:

Figure S37-1

Maximum Displacement 
at Node 41 (inch)

Theory -0.904

COSMOS/M -0.89705

Simply 
Supported

R2

H

P

r

Problem Sketch

θR1

41

22
23

1

H

P

R

R

R

t

o

2

1

∆

θ

Ho

x

Section
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ee 
List
TYPE:
Static analysis, axisymmetric (PLANE2D) elements, centrifugal loading.

REFERENCE:
S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity,” McGraw-Hill, New 
York, l970, p. 80.

PROBLEM:
A solid disk rotates about center 0 with angular velocity ω. Determine the stress 
distribution in the disk.

GIVEN:

COMPARISON OF RESULTS:

Figure S38-1

S38: Rotating Solid Disk S

E  = 30 x l06 psi
DENS = 0.02 lb sec2/in4

ν  = 0.3

h = l in
ω = 25 rad/sec
R = 9 in

Location
Element 1 (r = 0.5 inch)

Location
Element 9 (r = 8.5 inch)

σr psi σθ psi σr psi σθ psi
Theory 416.37 416.91 45.12 203.16

COSMOS/M 416.82 416.82 46.18 202.03

1

X

R

h

20

Y

2

Y

191

9

2R

Problem Sketch and Finite Element Model

ω
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ee 
List
TYPE:
Static analysis, centrifugal loading, beam and mass elements (BEAM3D, MASS).

PROBLEM: 
The model shown in the figure is assumed to be rotating about the y-axis at a 
constant angular velocity of 25 rad/sec. Determine the axial forces and bending 
moments in the supporting beams and columns due to self-weight and rotational 
inertia.

GIVEN: 

COMPARISON OF RESULTS: 

S39: Unbalanced Rotating Flywheel S

Element Properties:

A  = 100 in2

Iyy  = Izz = l000 in4

Ixx  = 2000 in4

E  = 30 x l06 psi
G  = 10 x l06 psi
ρ  = 0.0l lb-sec2 /in4

Inertial Properties:

m3  = m4= l0
ay  = -l00 in/sec2

w  = 25 rad/sec

Theory COSMOS/M

Element 2, Node 2
  Axial Force 
  Bending Moment

58,800
412,000

58,800
412,000

Element 3, Node 2
  Axial Force 
  Bending Moment

61,200
388,000

61,200
388,000

Figure  S39-1

ω

1
10

6

X
1

3

8 8

Y

6

m
4

m2

3 2

Problem Sketch and Finite Element Model
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ee 
List
TYPE:
Static analysis, truss elements (TRUSS2D).

REFERENCE: 
Hsieh, Y. Y., “Elementary Theory of Structures,” Prentice-Hall Inc., l970, pp. l62-
l63.

PROBLEM: 
Calculate the reactions and the vertical deflection of joint 2 of the loaded truss 
shown below subject to a concentrated load.

Figure S40-1

S40: Truss Structure Subject to a
Concentrated Load

S

GIVEN: COMPARISON OF RESULTS:

E  = 30,000 kips/in2 
P  = 64 kips
L (ft)/A(in) = 1 for all members 

Theory COSMOS/M

Deflection of Joint 2 0.006733 in 0.006733 in

Reaction at Node 1 48 K 48 K

Reaction at Node 5 16 K 16 K

12
13

11
10

65

2

7

3

8

4

9

1 2 3 4
5

6 7 8

P

32 ft

4 at 24 ft = 96 ft

Problem Sketch and Finite Element Model

1

COSMOS/M Basic FEA System

http://www.cosmosm.com


Part 2   Verification Problems

ee 
List
TYPE:
Static analysis, beam element (BEAM2D).

REFERENCE: 
Hsieh, Y. Y., “Elementary Theory of Structures,” Prentice-Hall Inc., l970, pp. 258-
259.

PROBLEM: 
Determine the reactions for 
the frame shown below. 

GIVEN: 
E  = 30 x 106 psi
A  = 0.1 in2

The relative values of 2EI/L:
for element l = l lb-in
for elements 2, 3 = 2 lb-in

COMPARISON OF RESULTS: 
The free body diagram for the structural system is given below and COSMOS/M 
results are given in parentheses.

Figure S41-2

S41: Reactions of a Frame Structure S

25 ft.

15 ft.

1

2 3

4

15 ft.

P

1

2

3

Problem Sketch and Finite Element Model

Figure  S41-1

64.28
(64.28)

k

100

1

2

3

k

35.72
(35.72)

k

40.71
(40.71)

k

343.0
(342.8)

k-ft

40.71
(40.71)

k

257.2
(257.3)

k-ft

2 3

4
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ee 
List

GIV

E
h
L
W
P

 
d)
-4
TYPE: 
Static analysis, shell elements (SHELL4, SHELL6).

PROBLEM: 
Calculate reactions and deflections of a cantilever beam subject to a concentrated 
load at tip.

Figure S42-1

S42A, S42B: Reactions and 
Deflections of a Cantilever Beam

S

EN: COMPARISON OF RESULTS:

 = 30E6 psi 
 = 1 in
 = 10 in
 = 4 in
 = 8 lb

Theory
COSMOS/M

SHELL4 SHELL6 
(Curved)

SHELL6
(Assemble

Tip Deflection (Node 33) -2.667 x 10-4 -2.667 x 10-4 -2.683 x 10-4 -2.667 x 10

Total Force Reaction 8 lb 8 lb 8 lb 8 lb

Total Moment Reaction -80 lb-in -80 lb-in -80 lb-in -80 lb-in

L

1

31 40

10

45 55

33

11

W

Problem Sketch

Y

X

h
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ee 
List
TYPE:
Static analysis, shell element, beam element with offset (SHELL4L, BEAM3D).

PROBLEM:
Calculate the deflections and stresses of a cantilever T beam subjected to a 
concentrated load at the free end.

Figure S43-1

S43: Bending of a T Section Beam S

GIVEN: COMPARISON OF RESULTS:
L  = 2000 in
y  = 49 in
I  = 480833.33 in4 

E  = 10E10 psi
Dy  = -24 in

Theory COSMOS/M

Free End (at Node 12)
  Y-Displacement (in)
 θz- Rotation

-5.546E-6
-4.159E-9

-5.588E-6
-4.161E-9

Clamped End
 σx top (psi)
 σx bottom (psi) 

4.57360
20.3813

4.377
21.302

ANALYTICAL SOLUTION:
δ = PL3 / 3EI
φ = PL2 / 2EI
σ = Mc / I

NOTE: 
The maximum stress occurs in the beam. The 
point at which stresses are calculated for 
unsymmetric beams should be specified in the 
real constant set (real constants 25 and 26).

200"

50"

10"

10"
L

P

SHELL4L

I

C.G. of 
BEAM 3D 
Element

DY
N.A.

y

Y

Z

X

23

12

1

33

Finite Element Model

22

11

Problem Sketch

CG
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List
TYPE:
Static analysis, shell elements (SHELL4), coupled points (file S44A) and/or 
constraint equations (file S44B).

REFERENCE: 
Timoshenko, S., “Strength of Materials, Part II, Advanced Theory and Problems,” 
3rd Edition, D. Van Nostrand Co., Inc., New York, l956.

PROBLEM: 
A circular plate with a center hole is built-in along the inner edge and unsupported 
along the outer edge. The plate is subjected to bending by a moment M applied along 
the outer edge. Determine the maximum deflection and the maximum slope of the 
plate. In addition, deter-mine the moment M and the corresponding stress at the 
center of the first and the last elements.

GIVEN: 

CALCULATED INPUT: 
M1a = 10 in-lb/in = 52.359 in lb/l0°  segment

MODELING HINTS: 
Since the problem is axisymmetric, only a small sector of elements is needed. A 
small angle θ is used for approximating the circular boundary with a straight-side 
element. A radial grid with nonuniform spacing (3:l) is used. The load is applied 
equally to the outer nodes. Coupled nodes (CPDOF) and/or constraint equations 
(CEQN) are used to ensure symmetry for S44A and S44B, respectively. Note that all 
constraint and load commands are active in the cylindrical coordinate system.

S44A, S44B: Bending of a Circular 
Plate with a Center Hole

S

E  = 30E6 psi
ν  = 0.3
h  = 0.25 in
b  = 10 in

a  = 30 in
M  = 10 in lb/in
θ  = 10°
COSMOS/M Basic FEA System
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COMPARISON OF RESULTS*:
At the outer edge (node 14).

Figure S44-1

δz, inch θy, rad

Theory 0.0490577 -0.0045089

COSMOS/M 0.0492188 -0.0044562

Difference 0.3% 1.17%

* The above results are tabulated for S44A. 
Identical results will be obtained for S44B.

X = 10.86 inch
(First Element)

X = 27.2 inch
(Sixth Element)

Moment
in-lb/in σr, psi Moment

in-lb/in σr, psi

Theory -13.7 1319 -10.1 971.7

COSMOS/M -13.7 1313 -10.1 972.7

Difference 0% 0.45% 0% 0.10%

* The above results are tabulated for S44A. Identical 
results will be obtained for S44B.

M Mh
Z

X

Y

ab

Problem Sketch

8

14
13

12
11

10
9

7654321

1 2 3 4 5 6

θ

Y

X

Finite Element Model

)
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ee 
List
TYPE:
Static analysis, beam elements 
(BEAM3D) and point-to-point 
constraints (CPCNS 
command).

REFERENCE: 
Laursen H. I., “Structural 
Analysis,” McGraw-Hill, l969.

PROBLEM: 
Two vertical beams constitute 
an eccentric portal frame with 
the aid of 3 horizontal rigid 
bars. Find the deformations 
resulting from the horizontal 
forces.

GIVEN: 
h  = l in S  = 2.5
W  = l in E  = lE6 psi
L  = l0 in P  = 1 lb
I  = l/l2 in4 (about y and z axis)

MODELING HINT: 
Point-to-point constraint elements are used (i.e., points 2-
3, 3-4 and 4-5) to ensure the frame 2-3 - 4-5 is rigid when 
the horizontal forces are loaded. Each of the beams (l) 
and (2) will deform as shown:

COMPARISON OF RESULTS:

S45: Eccentric Frame S

Deflection 
along X-axis 
at points A 
and B:

δx (inch)

Theory 1.0000E-3

COSMOS/M 1.0104E-3

Difference 1%

x

y L

w

h

y

x

P

z

1 3

2

L

Cross Section

Problem Sketch and Finite Element Model

s

P BA

Figure  S45-1

Figure  S45-2

P, δ

Deflected Shape
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ee 
List
TYPE:
Static analysis, plane stress elements (PLANE2D), beam elements (BEAM2D), 
shell elements (SHELL9) and constraint elements.

PROBLEM: 
Calculate the maximum deflection and the maximum rotation of a cantilever beam 
loaded by a shear force at the free end.

GIVEN: 

MODELING HINTS: Continuum-to-Structure Constraint
Problem 1 (S46):
The plane stress elements are defined by nodes 1 through 12. The beam element is 
defined by nodes 13 and 14. Each plane stress element is theoretically equivalent to 
a beam element where I = 1/12 in4. Node 14 is attached to line 11-12, so displace-
ments and rotations are constrained to be compatible.

Problem 2 (S46A):
Two groups of PLANE2D, plane stress, 8-node elements are coupled together as 
shown in Figure S46–2 where the geometry and material properties are the same as 
those in Problem 1. The focus of interest in on the continuum-to-continuum 
constraint and the location of the primary point which is no longer located at the 
middle of the 3-point curve, but at any arbitrary position.

Problem 3 (S46B):
Two groups of SHELL9 elements are coupled together as shown in Figure S46–3 
where the geometry and material properties are the same as those in Problem 1 and 
2. The primary deformation is located in the x-y plane. This problem is provided to 
verify the accuracy of the structure-to-structure constraint.

ANALYTICAL SOLUTION:
δy = -pL3 / 3EI θx = -pL2 / 2EI

S46, S46A, S46B: Bending of a Cantilever Beam S

h  = 1 in
L  = 10 in

I  = 1/12 in4

E  = lE6 psi
ν  = 0.3
p  = -1 lb
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Figure  S46-2

Plane Stress (PL

Finite Elem
COMPARISON OF RESULTS:
At the free end:

Figure S46-1

δy inch θz rad

Theory -4.000E-3 -6.000E-4

Beam Element -4.000E-3 -6.000E-4

Plane Stress Element -4.006E-3 -6.000E-4

Beam/Plane Stress Element (S46) -4.008E-3 -6.000E-4

Plane Stress/Plane Stress Element (S46A) -4.009E-3 -5.985E-4 *
SHELL9/SHELL9 Element (S46B) -4.014E-3 -5.990E-4 *

* Computed using displacements at the free end.

P

E,I

L

h

Problem Sketch

1 3

2 4 12

13

11

14
x

P

Y

Finite Element Model

ANE2D) Elements

Point-to-Line Constraints

ent Model - 2

Shell (SHELL9) elements

Point-to-line Constraints

Finite Element Model - 3

Figure  S46-3
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ee 
List
TYPE:
Static analysis, SOLID elements, TETRA10 elements, BEAM elements, and point-
to-surface constraint elements (attachment).

PROBLEM: 
Calculate the maximum deflection and the maximum rotation 0 of a cantilever beam 
loaded by a shear force at the free end.

GIVEN: 

MODELING HINTS: Continuum-to-Structure Constraint
Problem 1 (S47):
The solid elements are defined by nodes 1 through 24. The beam element is defined 
by nodes 25 and 26. Each solid element is theoretically equivalent to a beam element 
where I = 1/12 in4 about y and z axes. Node 25 is attached to surface 21-22-24-23, 
so displacements and rotations are constrained to be compatible.

Problem 2 (S47A):
Two groups of SOLID 20-node elements are coupled together as shown in Figure 
S47-2 where the geometry and material properties are the same as those in Problem 
1. The focus of interest is on the continuum-to-continuum constraint and the location 
of the primary point which is no longer located at the middle of the 8-point surface, 
but at any arbitrary position.

Problem 3 (S47B):
Two groups of TETRA10 elements are coupled together as shown in Figure S47-3 
where the geometry and material properties are the same as those in Problem 1 and 
2. This problem is provided to verify the accuracy of the continuum-to-continuum 
constraint with the primary point located at any arbitrary position of a 6-node 
surface.

ANALYTICAL SOLUTION:
δ = -PL3 / 3EI θ = -PL2 / 2EI

S47, S47A, S47B: Bending of a Cantilever Beam S

h = 1 in
w = 1 in
L = l0 in

I = 1/12 in4 
 (about y and z axes)

E = 1E6 psi
ν = 0
p = 1 lb
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Figure  S47-2

Point-to-surface

Finite E
COMPARISON OF RESULTS:
At the free end.

Figure S47-1

Deflection
δ inch

Rotation
θ rad

Theory -4.000E-3 -6.000E-4

Beam Element -4.000E-3 -6.000E-4

Plane Stress Element -4.010E-3 -6.000E-4

Beam/Solid Element (S47) -4.005E-3 -6.000E-4

Solid/Solid Element (S47A) -3.986E-3 -5.962E-4 *

Tetra10/Tetra10 Element (S47B) -3.969E-3 -5.950E-4 *

* Computed using displacements at the free end.

21

h

Y

Z X

P

1

3

23

24

2622

2
6

25

5

L/2w

 Finite Element Model – 1

L/2

7

1

Problem Sketch  

P

w

h

L

SOLID Elements

 Constraints

lement Model - 2

Figure  S47-3

TETRA10 Elements

Point-to-surface Constraints

Finite Element Model - 3
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ee 
List
TYPE:
Static analysis, axisymmetric elements (PLANE2D).

REFERENCE: 
Brenkert, Jr., K., “Elementary Theoretical Fluid Mechanics,” John Wiley and Sons, 
Inc., New York, l960.

PROBLEM: 
A large cylindrical tank is partially filled with an incompressible liquid. The tank 
rotates at a constant angular velocity about its vertical axis as shown. Determine the 
elevation of the liquid surface relative to the center (lowest) elevation for various 
radial positions. Also, determine the pressure p in the fluid near the bottom corner 
of the tank.

GIVEN: 

COMPARISON OF RESULTS:

S48: Rotation of a Tank of Fluid (PLANE2D Fluid) S

w = l rad/sec
r = 48 in
h = 20 in
ρ = 0.9345E-4 lb-sec2/in4

g = 386.4 in/sec2

b = 30E4 psi

Where: 

b = bulk modulus
g = acceleration due to gravity
ρ = density

Displacements *   δy inch Pressure (psi)

Node 4 Node 7 Node 11 Element 60

Theory -1.86335 0 +1.86335 -0.74248

COSMOS/M * -1.8627 0 +1.8627 -0.74250

Difference 0.036% 0% 0.03% 0.003%

* After subtracting from the displacement at Node 1 (-1.4798 in)
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Figure S48-1
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r

Finite Element Model

Problem
Sketch
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ee 
List
TYPE:
Static analysis plane strain (PLANE2D) or SOLID elements.

REFERENCE: 
Brenkert, K., Jr., “Elementary Theoretical Fluid Mechanics,” John Wiley and Sons, 
Inc., New York, l980.

PROBLEM: 
Large rectangular tank is partially filled with an incompressible liquid. The tank has 
a constant acceleration to the right, as shown. Determine the elevation of the liquid 
surface relative to the zero acceleration elevation for various Y-axis positions. Also, 
determine the slope of the surface and the pressure p in the fluid near the bottom 
right corner of the tank.

GIVEN: 

COMPARISON OF RESULTS:

S49A, S49B: Acceleration of a Tank 
of Fluid (PLANE2D Fluid)

S

a = 45 in/sec2

b = 48 in
h = 20 in
g = 386.4 in/sec2

p = 30E4 psi
ρ = 0.9345E-4 lb-sec2/in4

Where: 

b = bulk modulus
g = acceleration due to gravity
ρ = density

Displacements   δy inch Pressure (psi)

Node 3 Node 7 Node 11 Element 60

Theory -1.86335 0 +1.86335 0.74248

COSMOS/M -1.8627 0 +1.8627 0.7425

Difference 0.036% 0% 0.03% 0.03%
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Figure S49A-1

Problem Sketch

r

Y

X

Finite Element Model
(Use PLANE2D Elements)

Z

Y

X

b

a
h

α
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13
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1

14
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ee 
List
TYPE: 
Static analysis, multi-field elements (4-node PLANE2D, 8-node PLANE2D, 
SHELL4T, 6-node TRIANG, 8-node SOLID, 20-node SOLID, TETRA4R and 
SHELL6 elements).

REFERENCE: 
Roark, R. J., “Formulas for Stress and Strain,” 4th Edition, McGraw-Hill Book Co., 
New York, l965, pp. 166.

PROBLEM: 
A curved beam is clamped at one 
end and subjected to a shear force 
P at the other end. Determine the 
deflection at the free end.

GIVEN: 

COMPARISON OF RESULTS:
Deflections at free end by theoretical solution is equal to 0.08854 in

S50A, S50B, S50C, S50D, S50F, S50G, 
S50H, S50I: Deflection of a Curved Beam

S

E = 10E6 psi
ν = 0.25
Rl = 4.12 in

R2 = 4.32 in
t = 0.1 in
p = 1 lb

Element COSMOS/M δy in2 Difference (%)

PLANE2D (4-Node) (S50A) 0.08761 1.05%

PLANE2D (8-Node) (S50B) 0.08850 0%

SHELL4T (S50C) 0.08827 0.26%

TRIANG (6-Node) (S50D) 0.07049 11.6%

TETRA4R (4-Node) (S50H) 0.08785 0.8%

SOLID (8-Node) (S50F) 0.08726 1.45%

SOLID (20-Node) (S50G) 0.08848 0.07%

SHELL6 (Curved) (S50I) 0.07498 15.32%

SHELL6 (Assembled) (S50I) 0.062679 29.2%

Figure  S50-3

P

R

R

2

1

t

Problem Sketch
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ee 
List
TYPE: 
Static analysis, beam elements (BEAM2D).

REFERENCE: 
Valerian Leontovich, “Frames and Arches,”
McGraw-Hill Book Co., Inc., New York, 
l959, pp. 68.

PROBLEM: 
Determine the support reactions for frame 
shown in the figure.

GIVEN: 
L = 16 ft
h = 8 ft
E = 4.32E6 lb/ft2

f = 6 ft
q = 10 lb/ft
Il2 = I23 = I34 = I45

Al2 = A23 = A34 = A34 = A45

Total Load = 4 lbs

MODELING HINTS: 
Find load intensity along the frame from

W = (Total load) / q = 4 lb/ft

Then use beam loading commands to solve the problem

COMPARISON OF RESULTS:
Reactions (lb):

S51: Gable Frame with Hinged Supports S

Node 
No.

Theory COSMOS/M
FX FY MZ FX FY MZ

1 4.44 30.00 0 4.40 30.00 0

5 -4.44 10.00 0 -4.40 10.00 0

Figure  S51-1

L/2 L/2

Problem Sketch

I 2

I 1

W = q L/2

L

I 2

I 1

X

3

2

1

Finite Element Model

4

5

Y

h

f
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ee 
List
TYPE:
Static analysis, beam elements (BEAM2D).

REFERENCE: 
Morris, C. H. and Wilbur, J. B., “Elementary Structural Analysis,” McGraw-Hill 
Book Co., Inc., Second Edition, New York, l960, pp. 93-94.

PROBLEM: 
Determine the support reactions for the simply supported beam with intermediate 
forces and moments.

Figure S52-1

S52: Support Reactions for a Beam with 
Intermediate Forces and Moments

S

75K

4K/ft

4 4 4 4 4 4

6K

2

6K
2

40K
30K

4K/ft

30K

Problem Sketch

40K 75K

1
3

24K ft

2

Finite Element Sketch

X

Z

Y

1

3

4
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GIVEN: 
A = 0.3472 ft2

Iy = Iz = 0.02009 ft4

Ix = 0.040l9 ft4

E = 4320 x l03 K/ft2

NOTE:
The sign convention for the intermediate loads follows the local coordinate system 
for the beam (defined by the I, J, K nodes).

COMPARISON OF RESULTS:

Figure S52-2

NOTE:
The results obtained with COSMOS/M are compared with those given in reference. 
The numbers shown in parenthesis are from COSMOS/M.

R     =   -45K (-45K) 1x

R     = 57 K (57K)1y
R     = 89K (89K)2y
COSMOS/M Basic FEA System
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ee 
List
TYPE:
Static analysis, beam elements (BEAM2D).

REFERENCE: 
Norris, C. H., and Wilbur, J. B., “Elementary Structural Analysis,” 2nd ed., 
McGraw-Hill Book Co., Inc., l960, pp. 99.

PROBLEM: 
Find the reactions in the support and forces and moments in the beam.

Figure S53-1

GIVEN: 
Iyy = Izz = l ft4

Ixx = 2 ft4

A = 3.464 ft2 

E = 432 x l04 k/ft2

S53: Beam Analysis with Intermediate Loads S

4

Y

Z

X
1 2 3

Finite Element Model

1 2

2K/ft

4 16 10

Problem Sketch
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NOTE:
The sign convention for intermediate loads, follows the local coordinate system, for 
the beam (defined by I, J, K nodes).

COMPARISON OF RESULTS:

Figure S53-2

NOTE:
COSMOS/M results are given in parentheses.

0
 

33.33 K.ft.

11.13 K
(11.13 K)

20.87 K
(20.87 K)

10.0 K
(10.0 K)

0.0 K
(0.0 K)

(-33.33 K.ft.) (33.33 K.ft)
Node 1 Nod 2 Node 2 Node 3

Element 1 Element 2

Use the BEAMRESLIST (Results, List, Beam End Force)
command to list the results

0
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ee 
List
TYPE:
Static analysis, beam elements (BEAM2D).

REFERENCE: 
Weaver, Jr., W., and Gere, J. M., “Matrix Analysis of Framed Structures,” 2nd ed., 
D. Van Nostrand Company, New York, l980. pp. 280, 486.

PROBLEM:
Find the deformations and forces in the plane frame subjected to intermediate forces 
and moments.

Figure S54-1

GIVEN: 
Ax = 0.04 m2

Iy = Iz = 2 x 103m4

Ix = 4 x 103m4

E = 200 x 106 KN/m2

L = 3m
P1 = 30 x 2(1/2) KN
P2 = 60 KN
M = 180 KN-m

S54: Analysis of a Plane Frame with Beam Loads S

2
P
2

L/2L/2

L/2

L/2

45
o

P
1

X

L

45
o

1

Y

P

1

2

Z

P

M M

3

Problem Sketch Finite Element Model

2

1

40.75*

40.75
+

4.747
+ 5.44

+

*   Results obtained from reference

+  Results obtained from COSMOS/M

Moments are in KNm units

Figure  S54-2
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ee 
List
TYPE:
Static analysis, beam element (BEAM3D).

REFERENCE:
Crandall, S. H., and Dahl, N. C., “An Introduction to the Mechanics of Solids,” 
McGraw-Hill Book Co., Inc., New York, l959, pp. 342.

PROBLEM: 
A cantilever beam of width b and length L has a depth which tapers uniformly form 
d at the tip to 3d at the wall. It is loaded by a force P at the tip. Find the maximum 
bending stress at x = L (midspan).
 

Figure S55-1

S55: Laterally Loaded Tapered Beam S

GIVEN:

P = 4000 lb
L = 50 in
d = 3 in
b = 2 in
E = 30E6 psi

COMPARISON OF RESULTS:

σx (psi)
(at node 2)

Theory 8333

COSMOS/M 8333

P

3d

d

x

y

L/2 L

Problem Sketch

1 2 3

Finite Element Model

x

P

21

L
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ee 
List
TYPE:
Static analysis, 9-node shell element (SHELL9).

REFERENCE:
Hughes, T. J. R., Taylor, R. L., and Kanoknukulchai, W. A., “Simple and Efficient 
Finite Element for Plate Bending,” I.J.N.M.E., 11, 1529-1543, 1977.

PROBLEM: 
A circular thick plate clamped at the boundary is subjected to a point load at its 
center. (Shown in Figure S56-1).

Determine the transverse displacement along the radius r.

GIVEN: 
E = 1.09E6
ν = 0.3
t = 2 (thickness) in
P = 4 lb
R = 5 in

ANALYTICAL SOLUTION: 

Where:

D = Et3 / 12(1-ν2)
G = E / 2 (1+ν)
K = 0.8333 (shear correction factor)

S56: Circular Plate Under a Concentrated 
Load (SHELL9 Element)

S
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COMPARISON OF RESULTS:

Figure S56-1

Node r (in)
Wmax (in) x 10-6

Analytical COSMOS/M

1 0.0 — -6.469

2 .625 4.185 -4.242

3 1.250 3.1670 -3.166

4 1.875 2.3474 -2.349

5 2.500 1.6366 -1.637

6 3.125 1.0316 -1.033

7 3.750 0.5458 -0.5465

8 4.375 0.1962 -0.1968

y

x
1 2 3 4 5 6 7 8 9

Finite Element Model
(12 Elements)

Problem Sketch

P

z

y

x

R
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ee 
List
TYPE:
Static analysis, 9-node shell element (SHELL9).

REFERENCE:
Dvorkin, E. N., and Bathe, K. J., “A Continue Mechanics Based Four Node Shell 
Element for General Nonlinear Analysis,” Engineering Computations, 1, 77-78, 
1984.

PROBLEM:
A cylindrical shell with both ends covered with rigid diaphragms which allow 
displacement only in the axial direction of the cylinder is subjected to a concentrated 
load on the center (shown in the figure below). Determine the radial deflection of 
point P.

MODELING HINTS:
Due to symmetry, only one-eighth of the cylinder is modeled. To simulate the rigid 
diaphragm, on the boundary of the cylinder with z = 0, no rotation along the axial 
direction (z-axis) is allowed.

S57: Test of a Pinched Cylinder with 
Diaphragm (SHELL9 Element)

S

GIVEN:

R = 300 in
L = 600 in
E = 3E6 psi
ν = 0.3
h = 3 (thickness) in
P = 1 lb

COMPARISON OF RESULTS

δx (inch)

Theory 0.18248E-4

COSMOS/M 0.17651E-4
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Figure S57-1
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ee 
List
TYPE:
Static analysis, 9-node shell element (SHELL9), 4-node tetrahedral element 
(TETRA4R).

REFERENCE:
MacNeal, R. H. and Harder, R. L., “A Proposed Standard Set of Problems to Test 
Finite Element Accuracy,” F. E. in Analysis and Design, pp. 3-20, 1986.

PROBLEM: 
A twisted beam is subjected to a concentrated load at the tip in the in-plane and out-
of-plane directions (shown in the figure below). Determine the deflections 
coincident with the load.

GIVEN:
L = 12 in
W = 1.1 in
h = 0.32, 0.0032 (thickness) in
F = 1 lb for h = 0.32 and 1e-6 lb for h=0.0032
E = 29E6 psi
ν = 0.22

COMPARISON OF RESULTS: 

S58A, S58B, S58C: Deflection of a Twisted Beam 
with Tip Force

S

Deflection in the direction of the 
force

Thickness (in)  Force Direction Theory COSMOS/M

h = 0.32 in
(S58A: SHELL9)

Force = 1.0 lb

In-Plane (Load case 1)
Out-of-Plane (Load Case 2)

0.5240E-2
0.1754E-2

0.5397E-2
0.1759E-2

h = 0.0032 in
(S58B: SHELL9)

Force=1e-6 lb

In-Plane (Load case 1)
Out-of-Plane (Load Case 2)

0.5256E-2
0.1794E-2

0.4704E-2
0.1255E-2

h = 0.32
(S58C: TETRA4R)

Force = 1.0 lb.

In-Plane (Load case 1)
Out-of-Plane (Load Case 2)

0.5240E-2
0.1754E-2

0.4967E-2
0.1600E-2
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Figure S58-1
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ee 
List
TYPE:
Static analysis, 4- and 9-node composite shell elements (SHELL4L, SHELL9L), 
solid composite element (SOLIDL).

REFERENCE: 
Chang, T. Y., and Sawamiphakdi, K., “Large Deformation Analysis of Laminated 
Shells by Finite Element Method,” Computers and Structures, Vol. 13, pp. 331-340, 
1981.

PROBLEM: 
A square sandwich plate consisting of two identical facings and an aluminum 
honeycomb core is subjected to uniform loading as shown in the figure below. 
Determine the central deflection of the plate at point A.

MODELING HINTS: 
Due to symmetry, one quarter of the plate is modeled. To ensure computational 
stability, a small elastic modulus (E = 1.0E-12) for the core is used.

S59A, S59B, S59C: Sandwich Square Plate 
Under Uniform Loading (SHELL9L)

S

GIVEN:

Facing: 
E = 10.5E6 ksi
ν = 0.3
hf = 0.015 in (thickness)
Core: 
E = 0 ksi
a = 25 in
Gxz = Gyz = 50 ksi
P = 9.2311 psi
hc = 1 in (thickness)

COMPARISON OF RESULTS:

Wmax at the Center

Reference
 SHELL4L (S59B)
 SHELL9L (S59A)
 SOLIDL (S59C)

0.846
0.868
0.849

COSMOS/M
 SHELL4L (S59B)
 SHELL9L (S59A)
 SOLIDL (S59C)

0.851
0.866
0.849
COSMOS/M Basic FEA System 2-93

http://www.cosmosm.com


Chapter 2   Linear Static Analysis

2-94
Figure S59A-1

z

y

x

clamped

clamped

clamped

clamped

h

h

h

c

f

Problem Sketch and Finite Element Model
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P
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f
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ee 
List
TYPE:
Static analysis, 9-node shell element (SHELL9).

REFERENCE:
Timoshenko, S. P. and Woinowsky-Krieger, S., “Theory of Plates and Shells,” 2nd 
Ed., McGraw Hill, New York, 1959.

PROBLEM:
Determine the maximum deflection (at point A) of a clamped-clamped plate (shown 
in the figure below) with uniform loading and modeled by a skewed mesh. Various 
span-to-depth ratios are investigated.

GIVEN:
E = 1E7 psi
ν = 0.3
a = 2 in
q = 1 psi (0.01 psi is used for thickness 0.002)
t = thickness = 0.2, 0.02, and 0.002  in

MODELING HINTS: 
Due to symmetry, only one quarter of the plate is modeled.

ANALYTICAL SOLUTION:
Ua = 0.00126 qa4/D

Where:

D = Et3 / 12(1 - ν2)

S60: Clamped Square Plate Under 
Uniform Loading

S
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COMPARISON OF RESULTS:

Figure S60-1

Span/Thickness Ratio * Deflection (inch)
Theory COSMOS/M

10
(q = 1.0 psi) -2.7518E-6 -3.4758E-6

100
(q = 1.0 psi) -2.7518E-3 -3.0649E-3

1,000
(q = 0.01 psi) -2.7518E-2 -2.79259E-2

* The input file provided (S60.GEO) is for a span/thick-
ness ratio of 10. You need to redefine the thickness for 
other ratios using the RCONST command. 

Better accuracy can be obtained with a finer mesh.

A

Finite Element Model
(2 x 2 Skew)

z

y

x
a

A

Problem Sketch

a

t

q
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ee 
List
TYPE: 
Static analysis, crack element, stress intensity factor, 8-node plane continuum 
element (PLANE2D).

REFERENCE: 
Brown, W. F., Jr., and Srawley, J. E., “Plane Strain Crack Toughness Testing of High 
Strength Metallic Materials,” ASTM Special Technical Publication 410, 
Philadelphia, PA, 1966.

PROBLEM: 
Determine the stress 
intensity factor of a 
single-edge-cracked 
bend specimen using 
the crack element.

GIVEN:
E = 30 x 106 psi
ν = 0.3 
Thickness = 1 in
a = 2 in
b = 4 in
L = 32 in
P = 1 lb

COMPARISON OF RESULTS:

S61: Single-Edge Cracked Bend Specimen, 
Evaluation of Stress Intensity Factor 

Using Crack Element
S

KI

Theory 10.663

COSMOS/M 9.855

L

P

a

Problem Sketch

Finite Element Model

Y

x

P/2

b

Figure  S61-1
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ee 
List
TYPE:
Static analysis, crack stress intensity factor, 8-node plane continuum element 
(PLANE2D).

REFERENCE:
Cook, Robert D., and Cartwright, D. J., “Compendium of Stress Intensity Factors,” 
Her Majesty’s Stationary Office, London, 1976.

PROBLEM:
Determine the 
stress intensity 
factor of the center-
cracked plate.

GIVEN:
E = 30x 106 psi
ν = 0.3
Thickness = 1 in
W = 20 in
a = 2 in
p = 1 lb/in

COMPARISON OF RESULTS:

S62: Plate with Central Crack S

KI

Theory 2.5703

COSMOS/M 2.668

2a

W

Y

X

Problem Sketch Finite Element Model

p

p

W

Figure  S62-1
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ee 
List
TYPE: 
Static analysis, cyclic symmetry, truss elements (TRUSS2D).

REFERENCE: 
Cook, Robert D., “Concepts and Applications of Finite Element Analysis.” 2nd 
Edition, John Wiley & Sons, New York, 1981.

PROBLEM: 
The pin-jointed plane 
hexagon is loaded by 
equal forces P, each 
radial from center 0. 
All lines are uniform 
and identical. Find the 
radial displacement of 
a typical node. 

GIVEN: 
r = 120 in
L = l20 in
A = l0 in2

P = 3000 lb
E = 30E6 psi

MODELING HINTS: 
Taking advantage of the cyclic symmetry of the model and noting that the model 
displaces radically the same amount at all six nodes, only one element is considered 
with the radial degree of freedom coupled in the cylindrical coordinate system.

COMPARISON OF RESULTS:
Radial Displacement = 2PL/AE = (3000)(120)/(10)(30E6) = 0.0012 in

S63: Cyclic Symmetry Analysis 
of a Hexagonal Frame

S

Radial Displacement

Theory 0.0012 in

COSMOS/M 0.0012 in

P

P

P

P

P

P Y

x

rθ B

D

A

C

O

Geometric Model

L

P

P

1o

A

B

Finite Element Model

r

1

Y

x

2

Figure  S63-1
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ee 
List
TYPE: 
Static analysis, cyclic symmetry, 3-node triangular elements (TRIANG).

REFERENCE: 
Cook, Robert D., “Concepts and Applications of Finite Element Analysis.” 2nd 
Edition, John Wiley & Sons, New York, 1981.

PROBLEM: 
A hexagonal shaped plate is loaded by a set of 
radial forces as shown in the figure below. 
Calculate the deformation of the structure at the 
point where the load is applied. The plate is 
considered as a plane stress problem and 
modeled with 3-node triangular plane elements.

GIVEN: 
R = l0 in
t = l in
P = 3000 lb
E = 30E6 psi

MODELING HINTS: 
This plate is built by combining six sub-structures 
at 60 degree angles relative to one another. Taking 
advantage of the cyclic sub-structure may be considered for analysis. Note that for 
the sub-structure shown, the displacements of nodes along A-A and B-B must be the 
same in the radial directions. Therefore, these nodes will be coupled radially in the 
cylindrical coordinate system. All degrees of freedom in the circumferential 
direction will be fixed.

COMPARISON OF RESULTS:
The problem is solved for both the full structure and the sub-structure with the 
displacements coming out identical for the corresponding nodes.

S64A, S64B: Cyclic Symmetry S

Displacement at Point A X-Displacement Y-Displacement

Full Model (S64A) -9.445E-5 -1.636E-4

Cyclic Part (S64B) -9.450E-5 -1.637E-4

P
P

P
P

P

P

A

B

A B

Full Structure

A

A B

B

p

Sub-Structure

Figure  S64-1
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ee 
List
TYPE:
Static analysis, axisymmetric solid (PLANE2D) and fluid (PLANE2D) elements.

REFERENCE:
S. Timoshenko and S. Woinowsky-Kreiger, “Theory of Plates and Shells,” 2nd 
Edition, McGraw Hill, New York, 1959, pp. 485-487.

PROBLEM: 
A large cylindrical tank is filled with an incompressible liquid. The tank rotates at a 
constant velocity about its vertical axis as shown. Determine the deflection of the 
tank wall and the bending and shear stresses at the bottom of the tank wall. 

S65: Fluid-Structure Interaction, 
Rotation of a Tank of Fluid

S

GIVEN:
r = 48 in
h = 20 in
t = 1 in

Fluid:
ρ = 0.9345E-4 lb-sec2/in4 
b = 30E4 psi

Tank:
E = 3E7 psi
ν = 0.3
ω = 1 rad/sec 
g = 386.4 in/sec2

Where:
b = Bulk modulus
g = Accel. due to gravity
ρ = Density
E = Young's modulus
ν = Poisson’s ratio

COMPARISON OF RESULTS:

Deflection in x-direction (10-6 in)
Y (in) Point Theory COSMOS/M

20
16
12
8
4
0

A
B
C
D
E
F

  7.381
19.544
27.805
27.161
13.604

0

  8.269
18.854
26.870
26.578
13.700

0

Theory COSMOS/M

σyy, (max), psi 52.24 40.34

Q0, lb/in   3.76    3.20

- Note: Compatibility is imposed along the 
direction normal to the interface using the 
CPDOF command (LoadsBC, Structural, 
Coupling, Define DOF Set).
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ANALYTICAL SOLUTIONS:
1. Deflection w(y):

λ  = ρg
P = pressure applied on the tank wall due to an angular velocity

2. End Moment M0:

3. End Shear force Q0:

Figure S65-1

t

r

h Liquid

y

ω

Problem Sketch

A

Interface

48 Elements
4 Elements

20 
Elements

x

y

Finite Element Model

B

C

D

E
F
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ee 
List
TYPE: 
Static analysis, plane strain solid (PLANE2D) and plane fluid (PLANE2D) 
elements.

REFERENCE: 
Timoshenko, S. P., and Gere, James M., “Mechanics of Materials,” McGraw Hill, 
New York, 1971, pp. 167-211.

PROBLEM: 
A large rectangular tank is filled with an incompressible liquid. The tank has a 
constant acceleration to the right, as shown. Determine the deflection of the tank 
walls and the bending and shear stresses at the bottom of the right tank wall.

S66: Fluid-Structure Interaction, 
Acceleration of a Tank of Fluid

S

GIVEN:
r = 48 in
h = 20 in
t = 1 in

Fluid:
ρ= 0.9345E-4 lb-sec2/in4 
b = 30E4 psi

Tank:
E= 3E7 psi
ν = 0.3
a = 45 in/sec2 
g = 386.4 in/sec2

Where:
b = Bulk modulus
g = Gravity Accel.
ρ= Density
E= Young's modulus
ν = Poisson’s ratio

COMPARISON OF RESULTS:

Point Y (in)
WR (inch) WL (inch)

Theory COSMOS/M Theory COSMOS/M
A
B
C
D
E
F

20
16
12
8
4
0

2.137E-3
1.591E-3
1.054E-3
5.564E-4
1.662E-4

0

2.150E-3
1.602E-3
1.062E-3
5.619E-4
1.689E-5

0

6.667E-4
5.120E-4
3.552E-4
1.989E-4
6.348E-4

0

6.761E-4
5.193E-4
3.605E-4
2.024E-4
6.512E-5

0

Theory COSMOS/M
σyy, (max), psi (at y = 0) 410.02 386.39

V0, lb/in (at y = 0) 9.24 8.84*

*This value is calculated by averaging TXY at the nodes 
located at the bottom of the right wall giving half weight 
to corner nodes.

- Note: Compatibility is imposed along the direction 
normal to the interface using the CPDOF command 
(LoadsBC, Structural, Coupling, Define DOF Set).
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ANALYTICAL SOLUTIONS:
1. Deflections of the right wall WR(y) and the left wall WL(y):

Where:

p0 = pgh

p1 = pressure applied on the right wall due to acceleration

p2 = pressure applied on the left wall due to acceleration

E = E/(1-ν2)

2. End Moment M0

M0 = -EI d2W / dy2

3. End Shear Force V0

V0 = τ A

V0 = -EI d3W / dy3

Figure S66-1

x
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h Liquid

Problem Sketch

a = 45 in/sec 2
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y

Interface

48 
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4 
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20 
Elements

x

1139

1239

1
A

B

C

E
F

D

COSMOS/M Basic FEA System

http://www.cosmosm.com


Part 2   Verification Problems

ee 
List
TYPE:
Static analysis, plane stress quadrilateral p-element (8-node PLANE2D) with the 
polynomial order of shape functions equal to 5.

PROBLEM: 
Calculate the maximum deflection of a cantilever beam loaded by a concentrated 
end force.

GIVEN:

COMPARISON OF RESULTS:

Figure S67-1

S67: MacNeal-Harder Test S

Geometric Properties:

h = 0.2 in
t = 0.1 in
L = 6 in
I = 2/3 x 10-4 in4

Material Properties:

E = 1 x 107 psi
ν = 0.3
Loading:

P = 1 lb

Theory COSMOS/M

Tip Displacement 0.1081 in 0.10807 in

P

h

L

45° 45°

x

y
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ee 
List
TYPE:
Static analysis, plane stress quadrilateral (8-node PLANE2D) and triangular (6-node 
TRIANG) p-elements with the polynomial order of shape functions equal to 5.

PROBLEM: 
Calculate the maximum stress of a plate with a circular hole under a uniformly 
distributed tension load.

Material Properties:

E = 30 x 106 psi
ν = 0.3
Loading:

p = 1000 psi

Figure S68-1

S68: P-Method Solution of a Square 
Plate with Hole

S

GIVEN: COMPARISON OF RESULTS:

Geometric Properties:

L = 12 in
d = 1 in
t = 1 in

Theory COSMOS/M 
(PORD = 5)

Max. Stress in 
X-Direction 3018 3058 psi

L

Y

X

d

P P

•

••

•

•
•

•

•

L

COSMOS/M Basic FEA System

http://www.cosmosm.com


Part 2   Verification Problems

ee 
List
TYPE:
Static analysis, plane stress triangular p-element (6-node TRIANG).

REFERENCE: 
Barlow, J., and Davis, G. A. O., “Selected FE Benchmarks in Structural and Thermal 
Analysis,” NAFEMS Rept. FEBSTA, Rev. 1, October, 1986, Test No. LG1.

PROBLEM: 
Calculate the stresses at point D of an elliptic membrane under a uniform outward 
pressure.

Figure  S69-1

S69: P-Method Analysis of an Elliptic 
Membrane Under Pressure

S

GIVEN: COMPARISON OF RESULTS

E = 210 x 103 MPa
ν = 0.3
t = 0.1
p = 10 MPa

σy, at Point D

Theory 92.70

COSMOS/M 93.72

1.0

1.75

x

y

2.0 1.25

D

2y
2x

2
All dimensions in meters

Thickness = 0.1
A

B

x

3.25

22 Y

2.75
=  1

C

 +           =  1

(((((                    )))))     +++++          (((((                         )))))

(((((          )))))
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ee 
List
TYPE:
Linear thermal stress analysis, plane continuum element (PLANE2D).

PROBLEM: 
A flat plate consists of different material properties through its length. Determine the 
deflections and thermal stresses in the plate due to uniform changes of temperature 
equal to 100°  F and 200°  F.

Figure S70-1

S70: Thermal Analysis with Temperature 
Dependent Material

S

GIVEN:

t = 0.1 in
x = 0.00001 in/in/° F
ν = 0
E = 30,000 ksi

COMPARISON OF RESULTS:

σx for All Elements
T = 100°  F * T = 200°  F

Theory -30 ksi -48 ksi

COSMOS/M -30 ksi -48 ksi

* The temperature in the input file corresponds to T = 
200°  F. You need to delete the applied temperature 
using the NTNDEL command and apply tempera-
ture of 100°  F using the NTND command.

E
(ksi)

30000
20000

150 200
Temperature

Elements 3 & 4

Elements 1 & 2E = 30E3 ksi            (CONSTANT)

Finite Element Model

X
1 2 3 4 5

6 8 9 107

Y
u

1" 1" 1"1"

4321
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ee 
List
TYPE:
Static analysis, composite shell element (SHELL4L).

PROBLEM: 
Determine the total deflection of the sandwich beam subjected to a concentrated 
load.

GIVEN:

THEORY:
D = ETbt3/6 + ETbtd2/2 + ECbc3/12 = 8.28 X 106 N.mm2

δ = WL3/48D + WLc/4bd2G = 6.2902 + 3.986 = 10.276 mm

COMPARISON OF RESULTS:

Figure S71-1

S71: Sandwich Beam with Concentrated Load S

Et = 7000 N/mm2

t = 3 mm
L = 1000 mm

Ec = 20 N/mm2

c = 25 mm
b = 100 mm

Gc = 5 N/mm2 

d = 28 mm
W = 250 N

Midspan 
Deflection (mm)

Theory 10.276

COSMOS/M 10.323

d

W

b

c

t

t

L
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ee 
List
TYPE:
Static analysis, tetrahedral elements (TETRA4, TETRA4R).

PROBLEM:
Constraint displacements at one end and prescribed displacements at the other end 
of the plate to produce a constant stress state with σx = 0.1667E5 and σy = σz = τ xy 
= τ yz = τ zx = 0.

Patch test model.

GIVEN:
Ex = 1E8
υ = 0.25
δx = 0.4E-2
t = 0.024
a = 0.12
b = 0.24

RESULTS:
All the above elements pass 
the patch test. The nodal 
stresses show that σx = 
0.1667E5 and σy = σz = τ xy = 
τ yz = τ zx = 0.

S74: Constant Stress Patch Test (TETRA4R) S

Figure  S74-1

Finite Element Model for Patch Test
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ee 
List
TYPE:
Linear static analysis, beam and gap elements (BEAM2D, GAP).

PROBLEM:
The problem is modeled using BEAM2D elements. Five gap elements with zero gap 
distances are used. Two different load cases were selected, and the analysis was 
performed.

GIVEN:
Ebeam = 30 x 106 psi
b = 1.2 in
h = 10 in
L1 = 100 in
L2 = 50 in

COMPARISONS OF RESULTS:
The deformation state of gaps for each load case agrees with the beam deformed 
shape corresponding to that load case. The results can be compared with the solution 
obtained from linear static analysis, where the gaps are removed and the nodes at the 
closed gaps are fixed.

OBTAINED RESULTS:

S75: Analysis of a Cantilever Beam with Gaps, 
Subject to Different Loading Conditions

S

Forces in Gap Elements

Applied Forces Load Case Gap 1 Gap 2 Gap 3 Gap 4 Gap 5

Fa = -1000
Fc = -2000 1  -361.84 -1197.4 -842.11 0 0

Fa = -1000
Fb = -1000 2 -1206.3  -275.0 0 0 0
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Figure S75-1

L
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h

Problem Sketch

Fa Fb Fc

L1 2 L 2 L 2 L 2

FInite Element   Model

1615141312

Y

X
11

1

Load Case 1

Fa   =   - 1000
Fc   =   - 2000

Load Case 2

Fa   =   - 1000
Fb   =   - 1000

Fa Fb Fc
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ee 
List
TYPE:
Linear static analysis, beam, plane and gap elements (BEAM2D, PLANE2D, 
TRUSS2D and GAP).

PROBLEM:
The shape of the piston is simulated through gap distances. In order to avoid 
singularities in the structure stiffness, two soft truss elements are used to hold the 
piston. The problem is analyzed for two different pressure values.

GIVEN:
Gap Distances:

g1 = g7 = 0.027 in
g2 = g6 = 0.001 in
g3 = g5 = 0.008 in
g4 = 0 in
h = 10 in
b = 1.2 in
k = 1 lb/in
E = 30 x 106 psi
Load case 1: P = 52.5 psi
Load case 2: P = 90.8 psi

COMPARISON OF RESULTS:
The forces in the gap elementss at a particular of time are in good agreement with 
the total force applied to the piston at that time. The deformed shape of the beam for 
each load case is comaptible with the forces and location of closed gaps for that load 
case.\

S76: Simply Supported Beam Subject to Pressure 
from a Rigid Parabolic Shaped Piston

S
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Figure S76-1

Forces in Gap Elements (lb) Total Force 
(Theory)No. of Closed Gaps Pressure Gap Forces Total

4 p = 52.5

  -215.5
  -215.5
-1668.0
-1668.0

-3767 -3780

2 p = 90.8 -3259.0
-3259.0 -6518 -6540

120 in 120 in60 in

p
y = (x/100) 3

h

b

Problem Sketch

p

24 25

23

22

91

2 3 4 5 6 7 8

g1 g7

10

11

Finite Element Model

Y

X

KK
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ee 
List
TYPE:
Static analysis, direct material property input, hexahedral solid element (SOLID).

REFERENCE:
Roark, R.J. “Formulas for Stress and Strain”, 4th Edition, McGraw-Hill Book Co., 
New York, 1965, pp. 104-106.

PROBLEM:
A beam of length L, width b, and height h is built-in at one end and loaded at the free 
end with a shear force F. Determine the deflection at the free end.

GIVEN:
L = 10 in
E = 30E6 psi
b = 1 in
υ  = 0.3
h = 2 in
F = 300 lb

MODELING HINTS:
Instead of specifying the elastic material properties by E and υ , the elastic matrix 
[D] shown below is provided by direct input of its non-zero terms.

S77: Bending of a Solid Beam Using 
Direct Material Matrix Input

S

[D] 

MC11 MC12 MC13 MC14 MC15 MC16
MC22 MC23 MC24 MC25 MC26

MC33 MC34 MC35 MC36
MC44 MC45 MC46

MC55 MC56
Sym. MC66
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RESULTS:
Displacement in Z-direction at the tip using E and υ ,  is compared with those 
obtained with direct input of elastic coefficients in matrix [D].

Figure S77-1

Using E and υ Using Direct
Matrix Input

Theory 0.005 0.005

COSMOS/M 0.00496 0.00496

Finite Element 
Model

Problem 
Geometry

L

b

h
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ee 
List
TYPE:
P–adaptive analysis, plane stress triangular p-element (TRIANG).

PROBLEM:
Calculate the maximum stress of a plate with a circular hole under a uniform 
distributed tension load.

GIVEN:
Geometric Properties:

L = 200 in
d = 20 in
E = 30 x 106 psi 
t = 1 in
Loading:

p = 1 psi

RESULTS:
Nodes: 33, elements: 12, allowable local displacement error: 5%.

S78: P-Adaptive Analysis of a Square 
Plate with a Circular Hole

S

Iter.
No.

Min
p

Max.
p d.o.f. Energy

x 10-4

Max.
Displ.
x 10-6

Max.
Stress

Local
Displ.
Error

%

No. of 
Sides Not 

Converged

1
2
3
4

Ref.

1
2
2
2
4

1
2
3
4
4

16
56
85

100
133

1.692
1.701
1.704
1.704
1.706

3.468
3.480
3.489
3.490
3.502

1.586
2.418
2.692
2.817
2.994

--
29.544
12.844
1.083

--

22
16
8
0
--
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Figure S78-1

Figure S78-2

L

Y

X

d

P PL

Plate with a Hole

2

3

4

3

4

4
4

4
4

4

3

3

3
3

3

3

2

2

2

2 2

Polynomial Order for Each Side at Iteration No. 4
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ee 
List
TYPE:
Static linear analysis using the asymmetric loading option (SHELLAX).

REFERENCE:
Zienkiewicz, O. C., “The Finite Element Method,” 3rd Edition, McGraw Hill Book 
Co., p 362.

PROBLEM:
Determine the radial displacement 
of a hemispherical shell under a 
uniform unit moment around the 
free edge.

GIVEN:
R = 100 in
r = 50 in
t = 2 in
E = 1E7 psi
M = l in-lb/in
ν (NUXY) = 0.33

MODELING HINTS:
It is important to note that nodal load is to be specified per unit radian which in this 
case is 50 in-lb/rad.

[Mt = Mx Arcx = Mx Rx Ψ = 1(50) (1) rad = 50]

Where:   Ψ = horizontal angle

COMPARISON OF RESULTS:

S79: Hemispherical Shell Under Unit 
Moment Around Free Edge

S

Radial Displacement at Node 31

Theory 1.58E-5 in

COSMOS/M 1.589E-5 in

Figure  S79-1

Problem Sketch

y

R
30

H

r

H t

x

MM
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ee 
List
TYPE:
Static linear analysis using the asymmetric loading option in SHELLAX.

REFERENCE:
NAFEMS, BranchMark Magazine, November, 1988.

PROBLEM:
Determine the stress of an 
axisymmetric Hyberbolic 
shell under loading F = cos2 θ 
on the outward edge, y = 1.

GIVEN:
R1 = 1 m
H = 1 m
tan φ = 2(-1/2)

R2 = 2(1/2) m
E = 210E3 MPa
ν (NUXY)= 0.3
Thickness = 0.01

MODELING HINTS:
Due to symmetry only half of the shell will be modeled. The Cosine load at the free 
edge will be applied in terms of its x- and y- components, representing the second 
term of the even function for a Fourier expansion.

COMPARISON OF RESULTS:
The results in the following table correspond to the NXZ component of stress for 
element 1 as recorded in the output file.

S80: Axisymmetric Hyperbolic Shell Under a 
Cosine Harmonic Loading on the Free Edge

S

Shear Stress (y = 0, θ = 45° )

Theory -81.65 MPa

COSMOS/M -79.63 MPa

φ

A

11

Y
H

r

B

A

θ

Y = r    -13

R

r

2

Y

Problem Sketch

x

B

1R

Finite Element Model

1

Figure  S80-1
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ee 
List
TYPE:
Static linear analysis using the asymmetric loading option in SHELLAX.

REFERENCE:
SHELL4 elements are used for comparison purposes.

PROBLEM:
A circular plate with inner and outer radii of 3 in and 10 in respectively, is subjected 
to a non-axisymmetric load around outer circumference from θ = -54°  to θ = 54°  
perpendicular to the plate surface. The load distribution is:

F (θ) = 5.31 [1 + cos(10 θ/3)]*103

GIVEN:
Ri = 3 in
R0 = 10 in
E = 3E7 psi
t = 1 in
ν (NUXY)= 0.3

MODELING HINTS:
A total of seven elements are considered in this example. Note that since the load is 
symmetric about the x-axis, it will be considered only between θ = 0°  and θ = 54°  
at 3°  intervals, and represented by the even (Cosine) terms of the Fourier expansion. 
Only the first six (Cosine) terms will be included.

COMPARISON OF RESULTS:

S81: Circular Plate Under 
Non-Axisymmetric Load

S

Displacement of Outer Edges 
(θ = 180° ) in the Axial Direction

SHELLAX 5.80 x 10-4 in
SHELL4 5.62 x 10-4 in
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Figure S81-1

Problem Sketch

z

R 0

= -54°

X

= +54°

Finite Element Model

R
R0

i

1

Y

1 2 3
X

4 5 6 7 8

7

θ

θ

Load 
Distribution
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ee 
List
TYPE:
Static analysis, PLANE2D element using asymmetric loading option.

REFERENCE:
Timoshenko, S., “Strength of Materials,” 3rd Edition, D. Van Nostrand Co., Inc., 
New York, 1956.

PROBLEM:
A long solid circular shaft is built-in at one end and subjected to a twisting moment 
at the other end. Determine the maximum shear stress, τ max, at the wall due to the 
moment.

Figure S82-1

S82: Twisting of a Long Solid Shaft S

d/2

_ 0
 0

 
 0

 0
 

3 5 8

2 7 12

1

4 6 9 11

63

62

61

X

Y
56

57

58

Finite Element Model

60

59

x

Z

d

L
M

y

Problem Sketch
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GIVEN:
E = 30E6 psi
L = 24 in
d = 1 in
M = -200 in-lb

MODELING HINTS:
Since the geometry is axisymmetric about the y-axis, 
the finite element model, shown in the figure above, is 
considered for analysis. The effect of the applied 
moment is calculated in terms of a tangential force 
integrated around the circumference of the circular rod.

ANALYTICAL SOLUTION:

The load is applied at (node 63) in the z-direction (circumferential). Ux (radial) 
constraints are not imposed at the wall in order to allow freedom of cross-sectional 
deformation which corresponds to the assumptions of “negligible shear” stated in 
the reference.

COMPARISON OF RESULTS:
At clamped edge (node 3).

Max Shear Stress (psi)  τ 13

Theory 1018.4

COSMOS/M 1018.4

dθ

Fz

Figure  S82-2
COSMOS/M Basic FEA System
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ee 
List
TYPE:
Static analysis, PLANE2D element using the asymmetric loading option.

REFERENCE:
Timoshenko, S., “Strength of Materials,” 3rd Edition, D. Van Nostrand Co., Inc., 
New York, 1956.

PROBLEM:
A long solid circular shaft is built-in at one end and at the other end a vertical force 
is applied. Determine the maximum axial stress σy at the wall and at one inch from 
the wall due to the force.

Figure S83-1

S83: Bending of a Long Solid Shaft S

_ 0
 0

 
 0

 0
 

3 5 8

2 7

1

4 6

63

50

61

X
Fx

Y

58

56

Finite Element Model

d/2

x

Z

d

L

y

Problem Sketch
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GIVEN:
E = 30E6 psi
L = 24 in
d = 1 in
F = -25 lb

MODELING HINTS:
The finite element model is formed as noted in the figure 
considering the axisymmetric nature of the problem. The 
force applied at node 63 is calculated based on a Fourier 
Sine expansion representing its antisymmetric nature.

ANALYTICAL SOLUTION:

The load is applied at (node 75) in the z-direction (circumferential). Ux (radial) 
constraints are not imposed at the wall in order to allow freedom of cross-sectional 
deformation which corresponds to the assumptions of “negligible shear” stated in 
the reference.

COMPARISON OF RESULTS:
At element 1 and θ = 90° .

Max Axial Stress (sy psi)

y = 0 (Node 3) y = 1 in (Node 5)

Theory 6111.6 5856.9
COSMOS/M 6115.1 5856.8

Load Distribution

Fr

Figure  S83-2
COSMOS/M Basic FEA System
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ee 
List
TYPE:
Static analysis TRIANG element using the submodeling option.

PROBLEM:
Calculate the maximum von Mises stress for a square plate under a concentrated 
load at one corner. Compare the displacement and stress results from a fine mesh to 
the results from an originally coarse mesh improved using submodeling.

GIVEN:
a = 25 in
E = 30 E6 psi
b = 25 in
t = 0.1 in
Fx = Fy = 1000 lbs

Figure S84-1

COMPARISON OF RESULTS:

S84: Submodeling of a Plate S

Mesh Type Max Deflection at Node 1 Max Stress

Coarse Mesh -0.00131 3810

Coarse Mesh + Submodeling -0.00156 7626

Fine Mesh and Theory -0.00156 7620

Z

X Y
a b

submodel

FX=1000FY=1000

FIXED EDGE
FIXED EDGE

FREE EDGEFREE EDGE
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ee 
List
TYPE:
Static analysis, SHELL4 plate elements on elastic foundation.

PROBLEM:
A simply supported plate is subjected to uniform pressure P. The full plate is 
supported by elastic foundation. For small flexural rigidity, the calculated pressure 
applied to the plate from the foundation approaches the applied external pressures. 
The flexural rigidity decreases by decreasing the thickness and modulus of elasticity.
 

Figure S85-1

NOTE:
Foundation pressure is recorded in the output file for each element in the last column 
of element stress results.

S85: Plate on Elastic Foundation S

GIVEN:

E = 30 x 10 psi
ν = 0.3 
h = 0.01 in
a = 10 in
b = 10 in
P = 10 psi

COMPARISON OF RESULTS:

Foundation Pressure 
at Element 200

Theory -10.0

COSMOS/M -10.0

Z

XY ab

Pressure P

SIMPLY SUPPORTED SIMPLY SUPPORTED
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ee 
List
TYPE:
Static analysis, PLANE2D element, 
coupled degrees of freedom.

PROBLEM:
Determine displacements for the plate 
shown in the figure below such that 
translations in the Y-direction are 
coupled for nodes 5, 10, and 15.

GIVEN:
EX = 3.0E10, 3.0E09, and 3.0E8 psi
ν = 0.25

COMPARISON OF RESULTS:
Displacements for the coupled D.O.F.

ANALYTICAL SOLUTION:
U10 = U5 = FL/AE

S86: Plate with Coupled Degrees of Freedom S

Young’s 
Modulus

U5 (Y-
Translation 
at Node 5)

U10 (Y-
Translation 
at Node 10)

U15 (Y-
Translation 
at Node 15)

U10/U5

Theory

COSMOS/M

3.0E10 5.33333E-7

5.33333E-7

5.33333E-7

5.33333E-7

5.33333E-7

5.33333E-7

1.000

1.000

Theory

COSMOS/M

3.0E09 5.33333E-6

5.33333E-6

5.33333E-6

5.33333E-6

5.33333E-6

5.33333E-6

1.000

1.000

Theory

COSMOS/M

3.0E08 5.33333E-5

5.33333E-5

5.33333E-5

5.33333E-5

5.33333E-5

5.33333E-5

1.000

1.000

Figure  S86-1

1

20 in

10 in

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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ee 
List
TYPE:
Linear static analysis, ELBOW element with pipe cross-section subjected to gravity 
loading.

PROBLEM:
Case A: Reduced gravity loading (fixed-end moments ignored)
Case B: Consistent gravity loading (fixed-end moments considered)

GIVEN:
g = -32.2 in/sec2

EX = 3.0E7 psi
ρ = 7.82 
Elbow wall thickness = 0.1 in
Elbow outer diameter = 1.0 in
Elbow radius of curvature = 10.0 in

Figure S87-1

COMPARISON OF RESULTS:

S87: Gravity Loading of ELBOW Element S

Y-Translation at Node 51

Case A -7.42E-3

Case B -6.41E-3

Node 51

Node 1
COSMOS/M Basic FEA System
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ee 
List
TYPE:
Static analysis, J-integral, stress intensity factor, plane stress conditions.

S88A: Using 6-node triangular plane element (TRIANG)
S88B: Using 8-node rectangular plane element (PLANE2D)

REFERENCE:
Brown, W. F., Jr., and Srawley, J. E., “Plane Strain Crack Toughness Testing of High 
Strength Metallic Materials,” ASTM Special Technical Publication 410, 
Philadelphia, PA, 1966.

PROBLEM:
Determine the stress intensity factor for a single-edge-cracked bend specimen using 
the J-integral.

GIVEN:
E = 30 x 106 psi
υ  = 0.3
Thickness = 1 in
a = 2 in
b = 4 in
L = 32 in
P = 1 lb

MODELING HINTS:
Three circular J-integral paths centered at the crack tip are considered. Due to 
symmetry, only one half of the model is modeled.

S88A, S88B: Single-Edge Cracked Bend 
Specimen, Evaluation of Stress Intensity 

Factor Using the J-integral
S

COSMOS/M Basic FEA System 2-131
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COMPARISON OF RESULTS

Figure S88-1

Figure S88-2

KI (TRIANG) KI (PLANE2D)

Theory 10.663 10.663

Path 1 9.9544 9.1692

Path 2 10.145 10.974

Path 3 10.240 10.648

b

a

P

L

Full Model
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See 
List
TYPE:
Static analysis, J-integral, stress intensity factors (combined mode crack), plane 
strain conditions.

S89A: Using 6-node triangular plane element (TRIANG)
S89B: Using 3-node triangular plane element (TRIANG)
S89C: Using 8-node rectangular plane element (PLANE2D)
S89D: Using 4-node rectangular plane element (PLANE2D)

REFERENCE:
Bowie, O. L., “Solutions of Plane Crack Problems by Mapping Techniques,” in 
Mechanics of Fracture I, Methods of Analysis and Solutions of Crack Problems (Ed 
G.C. Shi), pp. 1-55, Noordhoff, Leyden, Netherlands, 1973.

PROBLEM:
Determine the stress intensity factor for both modes of fracture (opening and 
shearing) for a rectangular plate with an inclined edge crack subjected to uniform 
uniaxial tensile pressure at the two ends.

GIVEN:
σ = 1 psi
h = 2.5 in
W = 2.5 in
a = 1 in
E = 30 x 106 psi
υ = 0.3
Thickness =1 in
φ = 45°

MODELING HINTS:
The full part has to be modeled since the model is not symmetric with respect to the 
crack. There is no restriction in the type of the mesh to be used and the mesh could 

S89A, S89B: Slant-Edge Cracked Plate, Evaluation 
of Stress Intensity Factors Using the J-integral
COSMOS/M Basic FEA System 2-133
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be either symmetric or non-symmetric with respect to the crack. However, the nodes 
in the two sides of crack should not be merged in order to model the rupture area 
properly.

COMPARISON OF RESULTS:

KI KII

Reference 1.85 0.880

6-node element 
(S89A.GEO)

Path 1
Path 2

1.82
1.82

0.876
0.877

3-node element 
(S89B.GEO)

Path 1
Path 2

1.76
1.77

0.835
0.873

8-node element 
(S89C.GEO)

Path 1
Path 2

1.80
1.79

0.872
0.874

4-node element 
(S89D.GEO)

Path 1
Path 2

1.73
1.71

0.879
0.845

h

h

w

a

φ

σ

σ

Figure  S89-1 Figure  S89-2 2
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ee 
List
TYPE:
Static analysis, J-integral, stress intensity factor, axisymmetric geometry.

S90A: Using 8-node rectangular plane element (PLANE2D)
S90B: Using 6-node triangular plane element (TRIANG)

REFERENCE:
Tada, H. and Irwin, R., “the stress analysis of cracks Handbook,” Paris Productions, 
Inc., pp. 27.1, St. Louis, MI, 1985.

PROBLEM:
Determine the stress intensity factor for a circular crack inside a round bar subjected 
to uniform axial tensile pressure at the two ends.

GIVEN:
σ = 1 psi
H = 25 in
R = 5 in
a = 2.5 in
E = 30 x 106 psi
γ  = 0.28

MODELING HINTS:
Since the model is symmetric with respect to the crack, therefore only one-half of 
the model (lower half here) is needed for the analysis.

S90A, S90B: Penny-Shaped Crack in Round 
Bar, Evaluation of Stress Intensity Factor 

Using the J-integral
S
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COMPARISON OF RESULTS:

KI

Reference 1.94

8-node element 
(S90A.GEO)

Path 1
Path 2

1.90
1.91

6-node element 
(S90B.GEO)

Path 1
Path 2

1.89
1.90

σ

σ

2a

R

Figure  S90-1 Figure  S90-2 2
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ee 
List
TYPE:
Static analysis, thermal loading, J-integral, stress intensity factor, plane strain 
conditions.

REFERENCE:
Wilson, W. K. and Yu, I. W., “The Use of the J-integral in Thermal Stress Crack 
Problems,” International Journal of Fracture, Vol. 15, No. 4, August 1979.

PROBLEM:
Determine the stress intensity factor for an edge crack strip subjected to thermal 
loading. The strip is subjected to a linearly varying temperature through its thickness 
with zero temperature at midthickness and temperature To at the right edge (x=w/2). 
The ends are constrained.

GIVEN:
L = 20 in
w = 10 in
a = 5 in
E = 30 x 106 psi
γ = 0.28
α = 7.4 x 10-6 in/in-° F
To = 10 ° F

MODELING HINTS:
Due to symmetry, only one-half of the geometry is modeled (lower half in this 
problem).

COMPARISON OF RESULTS:

where:  β = K1/12220.27

S91: Crack Under Thermal Stresses, Evaluation 
of Stress Intensity Using the J-integral

S

COSMOS/M Basic FEA System 2-137
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T

KI KI /β
Reference 0.5036*

Path 1
Path 2

6141.4
6176.3

0.5034
0.5054

*Average value of the five paths in the reference

Figure  S91-2 2

Thickness

emperature To

-To

L

L

w

a

Figure  S91-1
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ee 
List
TYPE:
Static analysis, direct material input, SHELL3L element.

REFERENCE:
Timoshenko, S. P. and Woinowsky-Krieger, “Theory of Plates and Shells,” 
McGraw-Hill Book Co., 2nd edition, pp. 143-120, 1962.

PROBLEM:
Calculate the deflection and stresses at the center of a simply supported plate 
subjected to a concentrated load F.

GIVEN:

MODELING HINTS:
Instead of specifying the elastic properties by E and ν, the elastic matrix [D] shown 
below (in the default element coordinate system) is provided by direct input of its 
non-zero terms.

where, [D] relates the element strains to the element stresses according to Hook's 
law:

Note that the [D] matrix is reduced to a 5x5 matrix from the general form of 6x6 
matrix, by considering the fact that σz = 0 for shell element, thus eliminating the third 
row and column of the general [D] matrix.

S92A, S92B: Simply Supported Rectangular 
Plate, Using Direct Material Matrix Input

S

E = 30 x 106 psi
Gxy = Gyz = Gxz = 11.538 x 106 psi
ν = 0.3

h = 1 in
a = b = 40 in
F = 400 lbs
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Considering an isotropic property, the terms of [D] matrix are:

The terms K1 and K2 are 
shear correction factors 
which are chosen to match 
the plate theory with certain 
classical solutions and are 
functions of thickness and 
material properties. When 
you input regular material 
properties (E, ν), the shear 
factors are evaluated 
internally in the program as 
K1 = K2 = 0.1005 (as in 
S92B). For the sake of 
consistency, the same values 
are used for the evaluation of 
MC55 and MC66 in S92A.

Due to symmetry in geometry and load, only a quarter of the plate is modeled.

COMPARISON OF RESULTS:
Maximum displacement (in Z-direction) at the tip of the plate (Node 25) using E and 
ν (S92B) is compared with the result obtained from direct input of the elastic 
coefficients in matrix [D] (S92A).

Theory Using Direct Matrix 
Input (S92A) Using E and ν (S92B)

Maximum UZ
(in) -0.0270 -0.02746 -0.02746

Z

Y

Xh
1

b

a

5

21 25

F

Figure  S92-1

Problem Sketch and Finite Element Model
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ee 
List
TYPE:
Static analysis, inertia relief, PLANE2D element, (axisymmetric option).

PROBLEM:
A cylinder is accelerating under unbalanced external loads. Find the induced 
counter-balance acceleration and the amount by which the cylinder will be 
shortened.

GIVEN:
EX = 3.E7 psi
γ = 0.28 lb sec2/in4

ρ = 7.3E-4

Figure S93-1

S93: Accelerating Rocket S

Actual Model

H = 100 in

P = 100 psi X

Y

Finite Element  Model

R = 10 in
COSMOS/M Basic FEA System 2-141
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MODELING HINTS:
To avoid instability in FEA solution, one node should be constrained in Y-direction. 
A node on the top end of the cylinder is selected for that purpose rather than on the 
bottom end. Constraining any node on the surface where the pressure is applied 
eliminates the components of the load of that node and hence causes inaccuracy in 
the solution.

ANALYTICAL SOLUTION:
a) The induced counter-balance acceleration:

F + Ma = 0

P π R2 = -ρ π R2 Ha

b) Length shortening

COMPARISON OF RESULTS:

* See output file.

Acceleration
 (a)

Displacement uy 
at Node 5

Theory -1370 0.0001667

COSMOS/M -1370* 0.0001669

Figure S93-2

X

Y

η
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TYPE:
Static analysis using the p-method. S94A: plane stress triangular elements 
(TRIANG). S94B: plane stress quadrilateral elements ( PLANE2D). S94C: 
Tetrahedral elements (TETRA10).

PROBLEM:
Calculate the maximum stress of a plate with a circular hole under a uniformly 
distributed tension load. Use strain energy to adapt the p-order.

GIVEN:
Geometric Properties:

L = side of the plate = 10.00 in

d = diameter of the hole = 1.00 in

t = thickness of the plate = 0.25 in

Material Properties:

E = 3.0E7 psi

ν = 0.3

Loading:

P = 100 psi

- A coarse mesh is intentionally used to demonstrate the power of the p-method

S94A, S94B, S94C: P-Method Solution of a Square 
Plate with a Small Hole

10”

10”

1” diameter

P
r
e
s
s
u
r
e

stress
concentration

Figure S94-1: The Plate with a Hole Model
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Figure S94-2 Meshed Quarter of the Plate.

S94C: TETRA10 Elements

 
S94A: TRIANG Elements S94B: PLANE2D elements

Convergence Plots Using Different Element Types
COSMOS/M Basic FEA System
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COMPARISON OF RESULTS:

Reference:
Walter D. Pilkey, “Formulas For Stress, Strain, and Structural Matrices,” Wiley-
Interscience Publication, John Wiley & Sons, Inc., 1994, pp. 271.

Theory COSMOS/M Relative Error

Max. Stress in X-
Direction 
(TRIANG)

300 psi 308 psi (p-order = 4) 2.7%

Max. Stress in X-
Direction 

(PLANE2D)
300 psi 308 psi (p-order = 3) 2.7%

Max. Stress in X-
Direction 

(TETRA10)
300 psi 323 psi (p-order = 5) 7.7%
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TYPE:
Static analysis, axisymmetric triangular (6-node TRIANG) and quadrilateral (8-
node PLANE2D) p-elements with the polynomial order of shape function equal to 8.

PROBLEM:
Calculate the maximum stress of a circular shaft with a U-shape circumferential 
groove under a uniformly distributed tension load.  P-order is adapted by checking 
strain energy of the system.

GIVEN:
Geometric Properties:

L = 0.9 in

D = 2 in

d = 0.2 in

Material Properties:

E = 3.0E7 psi

ν = 0.3

Loading:

P = 100 psi

S95A, S95B, S95C: P-Method Solution of a U-
Shaped Circumferential Groove in a Circular Shaft

         

Figure S95-1: The Circular Shaft Model
COSMOS/M Basic FEA System
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Figure S95-2: Finite Element Model with Different Element Types

             

S95A: TRIANG elements S95B: PLANE2D elements

S95C: TETRA10 elements

Convergence Plots Using Different Element Types
COSMOS/M Basic FEA System 2-147
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2-148
COMPARISON OF RESULTS:

REFERENCE:
Walter D. Pilkey, “Formulas For Stress, Strain, and Structural Matrices,” Wiley-
Interscience Publication, JohnWiley & Sons, Inc., 1994, pp. 267.

Theory COSMOS/M Relative Error

Max. Stress in Y-
Direction 
(TRIANG)

305 psi 337 psi (p-order = 4 ) 10.5%

Max. Stress in Y-
Direction 

(PLANE2D)
305 psi 333 psi (p-order = 8) 9.2%

Max. Stress in Y-
Direction 

(TETRA10)
305 psi 339 psi (p-order = 5) 10.5%
COSMOS/M Basic FEA System
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3 Modal (Frequency) 
Analysis 
Introduction

This chapter contains verification problems to demonstrate the accuracy of the 
Modal Analysis module DSTAR.

List of Natural Frequency Verification Problems

F1:Natural Frequencies of a Two-Mass Spring System 3-3

F2: Frequencies of a Cantilever Beam 3-4

F3: Frequency of a Simply Supported Beam 3-5

F4: Natural Frequencies of a Cantilever Beam 3-6

F5: Frequency of a Cantilever Beam with Lumped Mass 3-7

F6: Dynamic Analysis of a 3D Structure 3-8

F7A, F7B: Dynamic Analysis of a Simply Supported Plate 3-9

F8: Clamped Circular Plate 3-10

F9: Frequencies of a Cylindrical Shell 3-11

F10: Symmetric Modes and Natural Frequencies of a Ring 3-12

F11A, F11B: Eigenvalues of a Triangular Wing 3-13

F12: Vibration of an Unsupported Beam 3-14
COSMOS/M Basic FEA System 3-1
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3-2
List of Natural Frequency Verification Problems (Concluded)

F13: Frequencies of a Solid Cantilever Beam 3-15

F14: Natural Frequency of Fluid 3-16

F16A, F16B: Vibration of a Clamped Wedge 3-17

F17: Lateral Vibration of an Axially Loaded Bar 3-19

F18: Simply Supported Rectangular Plate 3-20

F19: Lowest Frequencies of Clamped Cylindrical Shell for 
Harmonic No. = 6 3-21

F20A, F20B, F20C, F20D, F20E, F20F, F20G, F20H: Dynamic 
Analysis of Cantilever Beam 3-22

F21: Frequency Analysis of a Right Circular Canal of Fluid 
with Variable Depth 3-23

F22: Frequency Analysis of a Rectangular Tank of Fluid with 
Variable Depth 3-25

F23: Natural Frequency of Fluid in a Manometer 3-27

F24: Modal Analysis of a Piezoelectric Cantilever 3-29

F25: Frequency Analysis of a Stretched Circular Membrane 3-30

F26: Frequency Analysis of a Spherical Shell 3-31

F27A, F27B: Natural Frequencies of a Simply-Supported 
Square Plate 3-32

F28: Cylindrical Roof Shell 3-33

F29: Frequency Analysis of a Spinning Blade 3-34
COSMOS/M Basic FEA System
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ee 
List
TYPE: 

Mode shape and frequency, truss and mass element (TRUSS3D, MASS).

REFERENCES: 

Thomson, W. T., “Vibration Theory and Application,” Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 2nd printing, 1965, p. 163.

PROBLEM: 

Determine the normal modes and natural frequencies of the system shown below for 
the values of the masses and the springs given.

MODELING HINTS:

Truss elements with zero density are used as springs. Two dynamic degrees of 
freedom are selected at nodes 2 and 3 and masses are input as concentrated masses 
at nodes 2 and 3.

Figure F1-1

F1: Natural Frequencies of a 
Two-Mass Spring System

S

GIVEN:

m2 = 2m1 = 1 lb-sec2/in

k2 = k1 = 200 lb/in

kc = 4k1 = 800 lb/in

COMPARISON OF RESULTS:

F1, Hz F2, Hz

Theory 2.581 8.326

COSMOS/M 2.581 8.326

Problem Sketch

2
k

1
k

c k

m1 m2

1st
D.O.F.

2nd
D.O.F.

X

Finite Element Model
1 2 3 4

1 2 3

Y

54
COSMOS/M Basic FEA System 3-3
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3-4

ee 
List
TYPE:

Mode shape and frequency, plane element (PLANE2D).

REFERENCE: 

Flugge, W., “Handbook of Engineering Mechanics,” McGraw-Hill Book Co., Inc., 
New York, 1962, pp. 61-6, 61-9.

PROBLEM: 

Determine the fundamental frequency, f, of the cantilever beam of uniform cross 
section A.

Figure F2-1

F2: Frequencies of a Cantilever Beam S

GIVEN:

E = 30 x 106 psi
L = 50 in
h = 0.9 in
b = 0.9 in
A = 0.81 in2

ν = 0
ρ = 0.734E-3 lb sec2/in4

COMPARISON OF RESULTS

F1, Hz F2, Hz F3, Hz

Theory 11.79 74.47 208.54

COSMOS/M 11.72 73.35 206.68

y

x

Finite Element Model

L

Problem Sketch

 Front View Cross Section

b

h

COSMOS/M Basic FEA System
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ee 
List
TYPE:

Mode shapes and frequencies, beam element (BEAM3D).

REFERENCE: 

Thomson, W. T., “Vibration Theory and Applications,” Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 2nd printing, 1965, p. 18.

PROBLEM: 

Determine the fundamental frequency, f, of the simply supported beam of uniform 
cross section A.

GIVEN: 

E = 30 x 106 psi

L = 80 in

ρ = 0.7272E-3 lb-sec2/in4 

A = 4 in2

I = 1.3333 in4

h = 2 in

ANALYTICAL 
SOLUTION:

Fi = (iπ)2 (EI/mL4)(1/2)

i = Number of frequencies

COMPARISON OF RESULTS:

F3: Frequency of a Simply Supported Beam S

F1, Hz F2, Hz F3, Hz

Theory 28.78 115.12 259.0

COSMOS/M 28.78 114.31 242.7

Figure  F3-1

21 3 4
1

2 3

Y

4

5
X

6

Finite Element Model

L

h

Problem Sketch
COSMOS/M Basic FEA System 3-5
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3-6

ee 
List
TYPE:

Mode shapes and frequencies, beam element (BEAM3D).

REFERENCE: 

Thomson, W. T., “Vibration Theory and Applications,” Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 2nd printing, 1965, p. 278, Ex. 8.5-1, and p. 357.

PROBLEM: 

Determine the first three 
natural frequencies, f, of a 
uniform beam clamped at 
one end and free at the 
other end.

GIVEN: 

E = 30 x 106 psi

I = 1.3333 in4 

A = 4 in2

h = 2 in

L = 80 in

ρ = 0.72723E-3 lb sec2/in4

COMPARISON OF RESULTS:

F4: Natural Frequencies of a Cantilever Beam S

F1, Hz F2, Hz F3, Hz

Theory 10.25 64.25 179.9

COSMOS/M 10.24 63.95 178.5

L

h

Problem Sketch

1 2 3 4 19

1 2 18
X

Z

Y

20

Finite Element Model

Figure  F4-1
COSMOS/M Basic FEA System
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ee 
List
TYPE:

Mode shape and frequency, beam and mass elements (BEAM3D, MASS).

REFERENCE: 

William, W. Seto, “Theory and Problems of Mechanical Vibrations,” Schaum’s 
Outline Series, McGraw-Hill Book Co., Inc., New York, 1964, p. 7.

PROBLEM: 

A steel cantilever beam of 
length 10 in has a square cross-
section of 1/4 x 1/4 inch. A 
weight of 10 lbs is attached to 
the free end of the beam as 
shown in the figure. Determine 
the natural frequency of the 
system if the mass is displaced 
slightly and released.

GIVEN: 

E = 30 x 106 psi

W = 10 lb

L = 10 in

COMPARISON OF RESULTS:

F5: Frequency of a Cantilever Beam 
with Lumped Mass

S

F, Hz

Theory 5.355

COSMOS/M 5.359

L

W

Problem Sketch
Y

X

1 2 3
1

3
4

2

Finite Element Model

Figure  F5-1
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3-8

ee 
List
TYPE: 

Mode shapes and frequencies, pipe and mass elements (PIPE, MASS).

REFERENCE:

“ASME Pressure Vessel and 
Piping 1972 Computer 
Programs Verification,” Ed. 
by I. S. Tuba and W. B. 
Wright, ASME Publication 
I-24, Problem 1.

PROBLEM: 

Find the natural frequencies 
and mode shapes of the 3D 
structure given below.

GIVEN:

Each member is a pipe.

Outer diameter = 2.375 in

Thickness = 0.154 in

E = 27.9 x 106 psi

ν = 0.3

The masses are represented solely by lumped masses as shown in the figure.

M1 = M2 = M4 = M6 = M7 = M8 = M9 = M11 = M13 = M14 = 0.00894223 lb sec2/in

M3 = M5 = M10 = M12 = 0.0253816 lb sec2/in

COMPARISON OF RESULTS:

F6: Dynamic Analysis of a 3D Structure S

F1, Hz F2, Hz F3, Hz F4, Hz F5, Hz

Theory 111.5 115.9 137.6 218.0 404.2

COSMOS/M 111.2 115.8 137.1 215.7 404.2

8.625

8.625

17.25

18.625

10.0

18.625

27.25

x

z

y

Problem Sketch and Finite Element Model

Figure  F6-1
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ee 
List
TYPE:

Mode shapes and frequencies, shell elements (SHELL4 and SHELL6).

REFERENCE:

Leissa, A.W. “Vibration of Plates,” NASA, sp-160, p. 44.

PROBLEM:

Obtain the first natural 
frequency for a simply 
supported plate.

GIVEN:

E = 30,000 kips

ν = 0.3

h = 1 in

a = b = 40 in

ρ = 0.003 kips sec2/in4

NOTE:

Due to double symmetry in geometry and the required mode shape, a quarter of the 
plate is taken for modeling.

COMPARISON OF RESULTS

The first natural frequency of the plate is 5.94 Hz.

F7A, F7B: Dynamic Analysis of a Simply 
Supported Plate

S

F7A: SHELL4
F7B: SHELL6 

(Curved)
F7B: SHELL6 
(Assembled)

COSMOS/M 5.93 Hz 5.94 Hz 5.93

b

Z

Y

X
h

a

Problem Sketch and Finite Element Model

Figure  F7-1
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ee 
List
TYPE:

Mode shapes and frequencies, thick shell element (SHELL3T).

REFERENCE: 

Leissa A.W., “Vibration of Plates,” NASA sp-160, p. 8.

PROBLEM: 

Obtain the first three 
natural frequencies.

GIVEN:

E = 30 x 106 psi

ν = 0.3

ρ = 0.00073 (lb/in4) sec2

R = 40 in

t = 1 in

NOTE: 

Since a quarter of the plate is used for modeling, the second natural frequency is not 
symmetric (s = 0, n = 1) and will not be calculated. This is an example to show that 
symmetry should be used carefully. 

COMPARISON OF RESULTS:

F8: Clamped Circular Plate S

Frequency No. s* n* Theory (Hz) COSMOS/M (Hz)

1 0 0 62.30 62.40

2 0 2 212.60 212.53

3 1 0 242.75 240.30

s* refers to the number of nodal circles

n* refers to the number of nodal diameters

Finite Element Model

Y

X

R

t

Problem Sketch

CL

Figure  F8-1
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ee 
List
TYPE: 

Mode shapes and frequencies, shell element (SHELL4).

REFERENCE: 

Kraus, “Thin Elastic Shells,” John Wiley & Sons, Inc., p. 307.

PROBLEM: 

Determining the first three 
natural frequencies.

GIVEN:

E = 30 x 106 psi 

ν = 0.3

ρ = 0.00073 (lb-sec2)/in4

L = 12 in

R = 3 in

t = 0.01 in

NOTE:

Due to symmetry in geometry and the mode shapes of the first three natural 
frequencies, 1/8 of the cylinder is considered for modeling.

COMPARISON OF RESULTS:

F9: Frequencies of a Cylindrical Shell S

F1, Hz F2, Hz F3, Hz

Theory 552 736 783

COSMOS/M 553.69 718.50 795.60

t

R
Problem Sketch 

and Finite Element Model

L

Figure  F9-1
COSMOS/M Basic FEA System 3-11
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ee 
List
TYPE: 

Mode shapes and frequencies, shell element (SHELL4).

REFERENCE: 

Flugge, W. “Handbook of 
Engineering Mechanics,” First 
Edition, McGraw-Hill, New York, 
p. 61-19.

PROBLEM: 

Determine the first two natural 
frequencies of a uniform ring in 
symmetric case.

GIVEN:

E = 30E6 psi

ν = 0

L = 4 in

h = 1 in

R = 1 in

ρ = 0.25E-2 (lb sec2)/in4

COMPARISON OF RESULTS:

F10: Symmetric Modes and Natural 
Frequencies of a Ring

S

F1, Hz F2, Hz

Theory 135.05 735.14

COSMOS/M 134.92 723.94

Z

h L

Y

X
R

Problem Sketch

Figure  F10-1
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ee 
List
TYPE:

Mode shapes and frequencies, triangular shell elements (SHELL3 and SHELL6).

REFERENCE: 

“ASME Pressure Vessel and Piping 1972 Computer Programs Verification,” ed. by 
I. S. Tuba and W. B. Wright, ASME Publication I-24, Problem 2.

PROBLEM: 

Calculate the natural 
frequencies of a triangular 
wing as shown in the figure.

GIVEN:

E = 6.5 x 106 psi

ν = 0.3541

ρ = 0.166E-3 lb sec2/in4

L = 6 in

Thickness = 0.034 in

COMPARISON OF RESULTS:

Natural Frequencies (Hz):

F11A, F11B: Eigenvalues of a Triangular Wing S

Frequency 
No.

Reference

COSMOS/M

SHELL3
SHELL6 
(Curved)

SHELL6 
(Assembled)

1 55.9 55.8 56.137 55.898

2 210.9 206.5 212.708 210.225

3 293.5 285.5 299.303 291.407

Finite Element ModelProblem Geometry

L

Figure  F11-1
COSMOS/M Basic FEA System 3-13
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ee 
List
TYPE: 

Mode shapes and frequencies, rigid body modes, beam element (BEAM3D).

REFERENCE: 

Timoshenko, S. P., Young, O. H., and Weaver, W., “Vibration Problems in 
Engineering,” 4th ed., John Wiley and Sons, New York, 1974, pp. 424-425.

PROBLEM: 

Determine the elastic and 
rigid body modes of vibration 
of the unsupported beam 
shown below.

GIVEN:

L = 100 in
E = 1 x 108 psi
r = 0.1 in
ρ = 0.2588E-3 lb sec2/in4

ANALYTICAL SOLUTION:

The theoretical solution is given by the roots of the equation Cos KL Cosh KL = 1 
and the frequencies are given by:

COMPARISON OF RESULTS:

NOTE:

First two modes are rigid body modes.

F12: Vibration of an Unsupported Beam S

fi = Ki
2 (EI/ρA)(1/2)/(2π)

i = Number of natural frequencies
Ki = (i + 0.5)π/L

A = area of cross-section

ρ = Mass Density

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Theory F, Hz 0 0 11.07 30.51 59.81 98.86

Theory (ki) (0) (0) (4.73) (7.853) (10.996) (14.137)

COSMOS/M F, Hz 0 0 10.92 29.82 57.94 94.94

Figure  F12-1

1
1

2 3 15 16
2

Finite Element Model

15

L

Problem Sketch
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ee 
List
TYPE:

Mode shapes and frequencies, hexahedral solid element (SOLID).

REFERENCE: 

Thomson, W. T., “Vibration Theory and Applications,” Prentice-Hall, Inc., 
Englewood Cliffs, N. J., 2nd printing, 1965, p.275, Ex. 8.5-1, and p. 357.

PROBLEM: 

Determine the first 
three natural 
frequencies of a 
uniform beam 
clamped at one 
end and free at 
the other end.

GIVEN:

E = 30 x 106 psi

a = 2 in

b = 2 in

L = 80 in

ρ = 0.00072723 
   lb-sec2/in4

COMPARISON OF RESULTS:

F13: Frequencies of a Solid Cantilever Beam S

F1, Hz F2, Hz F3, Hz

Theory 10.25 64.25 179.91

COSMOS/M 10.24 63.95 178.38

L

x

y

z
Problem Sketch

b

a

Finite Element 
Model

Figure  F13-1
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ee 
List
TYPE: 

Mode shapes and frequencies, truss elements (TRUSS2D).

REFERENCE: 

William, W. Seto, “Theory and Problems of Mechanical Vibrations,” Schaum’s 
Outline Series, McGraw-Hill Book Co., Inc., New York, 1964, p. 7.

PROBLEM: 

A manometer used in a fluid mechanics laboratory has a uniform bore of cross-
section area A. If a column of liquid of length L and weight density ρ is set into 
motion, as shown in the figure, find the frequency of the resulting motion.

NOTE: 

The mass of fluid is lumped at nodes 2 to 28. The boundary elements are applied at 
nodes 6 to 24.

Figure F14-1

F14: Natural Frequency of Fluid S

GIVEN: COMPARISON OF RESULTS:

A = 1 in2

ρ = 9.614E-5 lb sec2/in4

L = 51.4159 in
E = 1E5 psi

F, Hz

Theory 0.617

COSMOS/M 0.617

y

y

y

Problem Sketch Finite Element Model

1.0"

10"

X

Y

10"
COSMOS/M Basic FEA System
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ee 
List
TYPE:

Mode shapes and frequencies, thick shell elements (SHELL3T, SHELL4T).

REFERENCE: 

Timoshenko, S., and Young, D. H., “Vibration Problems in Engineering,” 3rd 
Edition, D. Van Nostrand Co., Inc., New York, 1955, p. 392.

PROBLEM: 

Determine the fundamental frequency of lateral vibration of a wedge shaped plate. 
The plate is of uniform thickness t, base 3b, and length L.

GIVEN:

E = 30 x106 psi

ρ = 7.28E-4 lb sec2/in4

t = 1 in

b = 2 in

L = 16 in

MODELING HINTS:

Only in-plane (in x-y plane) frequencies along y-direction are considered. In order 
to find better results, out-of-plane displacements (z-direction) are restricted.

The effect of different elements and meshes is also considered.

ANALYTICAL SOLUTION:

The first in-plane natural frequency calculated by:

Using approximate RITZ method, for first and second natural frequencies:

F16A, F16B: Vibration of a Clamped Wedge S
COSMOS/M Basic FEA System 3-17
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COMPARISON OF RESULTS:

Figure F16A-1

Natural Frequency (Hz)

First Second

Reference
   Exact
   Ritz

774.547
775.130

---
2521.265

COSMOS/M
   SHELL3T (F16A)
   SHELL4T (F16B)

813.45
789.12

2280.78
2309.54

b

b
X

Y

Side View

Vibration
Direction

Fine Mesh SHELL4T 
Elements

Coarse Mesh SHELL3T 
Elements

Problem Sketch

Z
t

X

L

Plan
COSMOS/M Basic FEA System
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ee 
List
TYPE: 

Mode shapes and frequencies, in-plane effects, beam elements (BEAM3D).

REFERENCE: 

Timoshenko, S., and Young, D. H., “Vibration Problems in Engineering,” 3rd 
Edition, D. Van Nostrand Co., Inc., New York, 1955, p. 374.

PROBLEM: 

Determine the fundamental frequency of lateral vibration of a wedge shaped plate. 
The plate is of uniform thickness t, base 3b, and length L.

GIVEN:

COMPARISON OF RESULTS:

Figure F17-1

F17: Lateral Vibration of an Axially Loaded Bar S

E = 30E6 psi
ρ = 7.2792E-4 lb sec2/in4 
g = 386 in/sec2

b = h = 2 in
L = 80 in
P = 40,000 lb

F1, Hz F2, Hz F3, Hz

Theory 17.055 105.32 249.39

COSMOS/M 17.055 105.32 249.34

12

L

P

b

h

Problem Sketch

FInite Element Model

Z

1 2 3 14

1 2 13

1312
X

Y15
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ee 
List
TYPE: 

Mode shapes and frequencies, in-plane effects, shell element (SHELL4).

REFERENCE: 

Leissa, A.W., “Vibration of Plates,” NASA, p-160, p. 277.

PROBLEM: 

Obtain the fundamental frequency of a simply supported plate with the effect of in-
plane forces. Nx = 33.89 lb/in applied at x = 0 and x = a.

NOTE: 

Due to double symmetry in geometry, loads and the mode shape, a quarter plate is 
taken for modeling.

Figure F18-1

F18: Simply Supported Rectangular Plate S

GIVEN: COMPARISON OF RESULTS:

E = 30,000 psi
ν = 0.3
h = 1 in
a = b = 40 in
ρ = 0.0003 (lb sec2)/in4

P = 33.89 psi

F, Hz

Theory 4.20

COSMOS/M 4.19

Problem Sketch and Finite Element Model

Z Y

Xh

b

a

P
P
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ee 
List
TYPE:

Mode shapes and frequencies, axisymmetric shell elements (SHELLAX).

REFERENCE: 

Leissa, A. W., “Vibration of Shells,” NASA sp-288, p. 92-93 (1973).

PROBLEM: 

To find the lowest natural 
frequency of vibration for the 
cylinder fixed at both ends.

GIVEN: 
R = 3 in
L = 12 in
t = 0.01 in
E = 30 x 106 psi
ν = 0.35 
ρ = 0.000730 lb sec2/in4

Range of circumferential 
harmonics (n) = 4 to 7

MODELING HINTS:

All the 21 nodes are spaced equally along the meridian of cylinder. The number of 
circumferential harmonics (lobes) for each frequency analysis is to be specified and 
lowest frequency is sought.

COMPARISON OF RESULTS:

F19: Lowest Frequencies of Clamped 
Cylindrical Shell for Harmonic No. = 6

S

Harmonic No. 
(n)

First Frequency (Hz)

Theory Experiment COSMOS/M

(4) * 926 700 777.45

(5) * 646 522 592.6

(6) * 563 525 549.4

(7) * 606 592 609.7

* You need to re-execute the analysis by specifying these harmonic 
numbers under the A_FREQUENCY command. The lowest natural 
frequency is 549.6 Hz corresponding to harmonic number = 6.

21

1

Y

X

2
3

Finite Element Model

Problem Sketch

t

L
R

CL

CL

Figure  F19-1
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ee 
List
TYPE:

Mode shapes and frequencies, multifield elements, 4- and 8-node PLANE2D, 
SHELL4T, 6-node TRIANG, TETRA10, 8- and 20-node SOLID,  TETRA4R, and 
SHELL6.

PROBLEM: 

Compare the first two natural frequencies of a cantilever beam modeled by each of 
the above element types.

GIVEN: 

E = 107 psi

ρ = 245 x 10–3 lb-sec2/in4

b = 0.1 in

h = 0.2 in

L = 6 in

n = 0.3 

COMPARISON OF RESULTS:

The theoretical solutions for the first and second mode are: 181.17 and 1136.29 Hz.

F20A, F20B, F20C, F20D, F20E, F20F, F20G, F20H: 
Dynamic Analysis of Cantilever Beam

S

Input 
File

Element 1st Mode Error (%) 2nd Mode Error (%)

F20A PLANE2D 4-node 180.71 0.2 1127.96 0.7

F20B PLANE2D 8-node 181.15 0.0 1153.52 1.53

F20C TRIANG 6-node 183.35 1.2 1182.90 4.1

F20D TETRA10 183.10 1.0 1184.85 4.3

F20E SOLID 8-node 181.64 0.2 1134.67 0.2

F20F SOLID 20-node 179.72 0.8 1111.16 2.2

F20G TETRA4R 190.24 5.1 1182.72 4.1

F20H

SHELL6 (Curved) 183.371 1.2 1182.87 4.1

SHELL6 
(Assembled)

183.357 1.2 1182.54 4.1

b
L

h

Problem Sketch

Figure  F20-1
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ee 
List
TYPE: 

Mode shapes and frequencies, fluid sloshing, plane strain elements (PLANE2D).

REFERENCE: 

Budiansky, B., “Sloshing of Liquids in Circular Canals and Spherical Tank,” J. 
Aerospace Sci, 27, p. 161-173, (1960).

PROBLEM:

A right circular canal with radius R is half-filled by an incompressible liquid (see 
Figure F21-1). Determine the first two natural frequencies with mode shapes 
antisymmetric about the Y-axis.

GIVEN

R = 56.4 in

H/R = 0

ρ = 0.9345E-4 lb sec2/in4

EX = 3E5 lb/in2

Where:

EX = bulk modulus

NOTES:

1. A small shear modulus SXY = EX is used to prevent numerical instability.

2. The radial component of displacements (in local cylindrical coordinate system) 
is constrained at the curved boundary in order to allow sloshing.

3. The acceleration due to gravity (ACEL command) in the negative direction.

4. PLANE2D plane strain elements are used to solve the current problem since the 
mode shapes are independent of Z-direction coordinates.

5. For non rectangular geometries, one can expect to obtain some natural 
frequencies with no significant changes in the free surface profile. This situation 
is analogous to the rigid modes of a solid structure. Therefore, a negative shift of 
ω2 is recommended to prevent this type of sloshing modes.

F21: Frequency Analysis of a Right Circular 
Canal of Fluid with Variable Depth

S

COSMOS/M Basic FEA System 3-23
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COMPARISON OF RESULTS:

Figure F21-1

Mode 
Number

Analytical 
Solution

(Hz)

COSMOS/M
(Hz)

1 0.4858 0.4875

2 Not Available 0.7269

3 0.9031 0.8976

Y

X

R
Free Surface

Constrain only the radial 
component of displacement 
to allow sloshing.

Finite Element Model

H

COSMOS/M Basic FEA System

http://www.cosmosm.com


Part 2   Verification Problems

ee 
List
TYPE: 

Mode shapes and frequencies, fluid sloshing, hexahedral solid (SOLID).

REFERENCE: 

Lamb, H., “Hydrodynamics,” 6th edition, Dover Publications, Inc., New York, 
1945.

PROBLEM:

A rectangular tank with dimensions A and B in X- and Z-directions is partially filled 
by an incompressible liquid (see Figure F22-1). Determine the first two natural 
frequencies.

GIVEN:

A = 48 in

B = 48 in

H = 20 in

ρ = 0.9345E-4 lb sec2/in4

EX = 3E5 lb/in2

Where:

EX = bulk modulus

NOTE:

Please refer to notes (1), (2), (3), (4) and (5) in Problem F21.

COMPARISON OF RESULTS:

The analytical solution for natural frequencies is as follows:

where i and j represent the order number in X- and Z-directions respectively.

F22: Frequency Analysis of a Rectangular 
Tank of Fluid with Variable Depth

S
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The comparison of analytical solutions with those obtained using COSMOS/M for 
various values of i and j are tabulated below.

Figure F22-1

Frequency 
Number

I / J

Analytical 
Solution

(Hz)

COSMOS/M 
(Hz)

1 / 0 — —

0 /1 0.7440 0.7422

1 / 2 0.9286 0.9199

X

Y

Z

Free Surface

Constrain the normal component of 
displacement to allow sloshing.

AB

H

Finite Element Model
COSMOS/M Basic FEA System
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ee 
List
TYPE: 

Mode shapes and frequencies, fluid sloshing, plane strain elements (PLANE2D).

REFERENCE: 

William, W. Seto, “Theory and Problems of Mechanical Vibrations,” Schaum's 
Outline Series, McGraw-Hill Book Co., Inc., New York, 1964, p. 7.

PROBLEM:

A manometer used in a fluid mechanics laboratory has a uniform bore of cross-
sectional area A. If a column of liquid of length L and weight density r is set into 
motion as shown in the figures, find the frequency of the resulting motion.

NOTE:

A small shear modulus GXY = EX(1.0E-9) is used to prevent numerical instability. 
Global and local constraints are applied normal to the boundary to prevent leaking 
of the fluid. Acceleration due to gravity (ACEL command) in the negative y-
direction should be included for problems with free surfaces

F23: Natural Frequency of Fluid in a Manometer S

GIVEN: COMPARISON OF RESULTS:

A = 0.5 in2

ρ = 0.9345E-4 lb sec2/in4

L = 26.4934 in (length of
   fluid in the manometer)

EX = 3E5 lb/in2

Where:

EX = bulk modulus

F, Hz

Analytical Solution * 0.8596

COSMOS/M 0.8623
COSMOS/M Basic FEA System 3-27
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Figure F23-1

y

y

y

Problem Sketch Finite Element Model

X

Y
Constrain 
displacement 
components 
normal to the 
surface to allow 
fluid sloshing

5 in

0.5 in5 in

Free 
Surface
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ee 
List
TYPE:

Mode shapes and frequencies using solid piezoelectric element (SOLIDPZ).

REFERENCE: 

J. Zelenka, “Piezoelectric Resonators and their Applications”, Elsevier Science 
Publishing Co., Inc., New York, 1986.

PROBLEM:

A piezoelectric transducer with a polarization direction along its longitudinal 
direction has electrodes at two ends. Both electrodes are grounded to represent a 
short-circuit condition. All non-prescribed voltage D.O.F.'s are condensed out after 
assemblage of stiffness matrix. In this problem, the longitudinal mode of vibration 
is under consideration.

GIVEN:

L = 80 mm

b = h = 2 mm 

Density = 727 Kg/m3

NOTE:

To constrain voltage degrees of 
freedom for piezoelectric applica-
tion, use the RX component of
displacement in the applicable constraint commands (DND, DCR, DSF, etc.). There 
is no rotational degree of freedom for SOLID elements in COSMOS/M.

COMPARISON OF RESULTS:

For the sixth mode of vibration in this problem (longitudinal mode):

F24: Modal Analysis of a Piezoelectric Cantilever S

Sixth Mode of Vibration 
(Longitudinal Mode)

Theory 690 Hz

COSMOS/M 685 Hz

L = 80 mm
b = 2 mm
h = 2 mm
ρ = 727 kg/cu m

Figure  F24-1
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ee 
List
TYPE:

Frequency analysis using the nonaxisymmetric mode shape option (SHELLAX).

REFERENCE:

Leissa, A. W., “Vibration of Shells,” NASA-P-SP-288, 1973.

PROBLEM:

Find the first three frequencies of a stretched circular membrane.

MODELING HINTS:

A total of 9 elements are considered as shown. The stretching load of 1500 lb for a 
one radian section of the shell is applied with the inplane loading flag turned on for 
frequency calculations. All frequencies are found for circumferential harmonic 
number 0. 

Figure F25-1

F25: Frequency Analysis of a Stretched 
Circular Membrane

S

GIVEN: COMPARISON OF RESULTS

R = 15 in
E = 30E6 psi
T = 100 lb/in
t = 0.01 in (Thickness)
ρ = 0.0073 lb-sec2/in4

Natural 
Frequency No.

Theory 
(Hz)

COSMOS/M 
(Hz)

Error 
(%)

1 94.406 93.73 0.72

2 216.77 212.95 1.76

3 339.85 329.76 2.97

Finite Element Model

T

Y

X
1 2 10

1 9

9

R

R

T

T

T

T

Problem Sketch

TT

TT

R

X
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ee 
List
TYPE:

Frequency analysis using the nonaxisymmetric mode shape option (SHELLAX).

REFERENCE:

Krause, H., “Thin Elastic Shells,” John Wiley, Inc., New York, 1967.

PROBLEM:

Find the first eight 
frequencies of the 
spherical shell shown 
here for the 
circumferential 
harmonic number 2.

GIVEN:

R = 10 in

E = 1E7 psi

ρ = 0.0005208 lb-sec2/in4

ν (NUXY) = 0.3

t (Thickness) = 0.1 in

COMPARISON OF RESULTS:

F26: Frequency Analysis of a Spherical Shell S

Natural 
Frequency No.

Theory 
(Hz)

COSMOS/M 
(Hz)

Error (%)

1 1620 1622 0.12

2 1919 1923 0.20

3 2035 2044 0.44

4 2093 2110 0.81

5 2125 2153 1.32

6 2145 2188 2.00

7 2159 2224 3.01

8 2168 2262 4.34

Finite Element Model

X

4

3

2

1

Problem Sketch

44 4
R

Figure  F26-1
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ee 
List
TYPE:

Frequency analysis, Guyan reduction, SHELL4 elements.

Case A: Guyan Reduction

Case B: Consistent Mass

PROBLEM:

Natural frequencies of a simply-supported plate are calculated. Utilizing the 
symmetry of the model, only one quarter of the plate is modeled and the first three 
symmetric modes of vibration are calculated. The mass is lumped uniformly at 
master degrees of freedom.

Theoretical results can be 
obtained from the equation:

ωmn = r2D / L2U ∗  (m2 + n2)

Where:

D = Eh3 / 12(1 - ν2)

U = ρh

F27A, F27B: Natural Frequencies of a 
Simply-Supported Square Plate

S

GIVEN:

L = 30 in

h = 0.1 in

ρ = 8.29 x 10-4

   (lb sec2)/in4

ν = 0.3

E = 30.E6 psi

ANALYTICAL 
SOLUTION:

COMPARISON OF RESULTS:

Normalized mode shape displacements for the nodes 
connected by the rigid bar.

Natural Frequency (Hz)

First Second Third 

Theory 5.02 25.12 25.12

Case A: Guyan Reduction 5.03 25.15 25.20

Case B: Consistent Mass 5.02 25.11 25.11

Total Mass = ρ ∗  ν = 8.29 ∗  10-4 ∗  0.1 ∗  30 ∗  30 =.07461

Lumped Mass at Master Nodes = .07461/64 = 1.16E-3

L

Problem Sketch

961931

1 31

Simply 
Supported 
Plate

h

Figure  F27-1
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ee 
List
TYPE:

Natural mode shape and frequency, shell and  rigid bar elements.

PROBLEM:

Determine the first frequency and mode shape of the shell roof shown below.

GIVEN:

r = 25 ft

E = 4.32E12, 
4.32E11, and 
4.32E10 psi

ν = 0

MODELING HINTS:

Due to symmetry, a 
quarter of the shell roof 
is considered in the 
modeling. Nodes 8 and 
12 are connected by a 
rigid bar.

COMPARISON OF RESULTS:

Normalized mode shape displacements for the nodes connected by the rigid bar.

F28: Cylindrical Roof Shell S

Method
Young's 
Modulus

Z-Rotation
R8 / R12

 Node 8 (R8)  Node 12 (R12)

Theory
COSMOS/M

4.32E12
-0.5642901E-2
-0.5720E-2

-0.5642901E-2
-0.5720E-2

1.000
1.000

Theory
COSMOS/M

4.32E11
-0.5654460E-2
-0.5720E-2

-0.5654460E-2
-0.5720E-2

1.000
1.000

Theory
COSMOS/M

4.32E10
-0.5693621E-2
-0.5720E-2

-0.5693621E-2
-0.5720E-2

1.000
1.000

25 ft

25 ft

Free Edge

v = 
w = 0

t = 0.25 ft

v = w = 0

40°
40°

Y

Z

U
V

W

1

4

13

16

X

Problem Sketch and Finite 
Element Model

r

8

12

Free Edge

Figure  F28-1
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ee 
List
TYPE:

Frequency analysis using the Spin Softening and Stress Stiffening Options.

REFERENCE:

W. Carnegie, “Vibrations of Rotating Cantilever Blade,” J. of Mechanical 
Engineering Science, Vol. 1, No. 3, 1959.

PROBLEM:

Find the fundamental frequency of vibration of a blade cantilevered from a rigid 
spinning rod.

Figure F29-1

MODELING HINTS:

The blade is cantilevered to a rigid rod. Therefore, the blade may be modeled with a 
fixed displacement boundary condition at the connection to the rod. The Stress Stiff-
ening effect due to centrifugal load is considered in this model by activating the cen-
trifugal force option in A_STATIC command together with the Inplane Loading Flag 
in A_FREQUENCY command. 

F29A, B, C: Frequency Analysis 
of a Spinning Blade

S

ω

b

t h

R

Actual Model

Y

b

h

R

Finite Element Model

X
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GIVEN:

R = 150 mm E = 217 x 109 Pa

h = 328 mm ρ = 7850 Kg/m3

b = 28 mm γ  = 0.3

t = 3 mm ω = 314.159 rad/sec

COMPARISON OF RESULTS:

Fundamental 
Frequency (Hz)

 Error (%)

Theory 52.75

A Stress stiffening with spin softening 51.17 3.0

B Stress stiffening with no spin softening 71.54 36.0

C No stress stiffening and no spin softening 23.80 54.9
COSMOS/M Basic FEA System 3-35
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4 Buckling Analysis
Introduction

This chapter contains verification problems to demonstrate the accuracy of the 
Buckling Analysis module DSTAR.

List of Buckling Verification Problems

B1: Instability of Columns 4-2

B2: Instability of Columns 4-3

B3: Instability of Columns 4-4

B4: Simply Supported Rectangular Plate 4-5

B5A, B5B: Instability of a Ring 4-6

B6: Buckling Analysis of a Small Frame 4-7

B7A, B7B: Instability of Frames 4-9

B8: Instability of a Cylinder 4-10

B9: Simply Supported Stiffened Plate 4-11

B10: Stability of a Rectangular Frame 4-12

B11: Buckling of a Stepped Column 4-13

B12: Buckling Analysis of a Simply Supported Composite Plate 4-14

B13: Buckling of a Tapered Column 4-15

B14: Buckling of Clamped Cylindrical Shell Under External Pressure 
Using the Nonaxisymmetric Buckling Mode Option 4-16

B15A, B15B: Buckling of Simply-Supported Cylindrical Shell Under Axial Load 4-18
COSMOS/M Basic FEA System 4-1
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ee 
List
TYPE:

Buckling analysis, beam element (BEAM3D).

REFERENCE: 

Brush, D. O., and Almroth, B. O., “Buckling of Bars, Plates, and Shells,” McGraw-
Hill, Inc., New York, 1975, p. 22.

PROBLEM: 

Find the buckling load and deflection mode for a simply supported column.

ANALYTICAL SOLUTION:

Pcr = π2 EI / L2 = 9869.6 lb

Figure B1-1

B1: Instability of Columns S

GIVEN:

E = 30 x 106 psi
h = 1 in
L = 50 in
I = 1/12 in4

COMPARISON OF RESULTS:

Theory COSMOS/M

Pcr 9869.6 lb 9869.6 lb

Problem Sketch

P P

L

EI

h

1 2 3 21

22
2 20

Y
Z

X

Finite Element Model

1
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ee 
List
TYPE:

Buckling analysis, beam element (BEAM3D).

REFERENCE: 

Brush, D. O., and Almroth, B. O., “Buckling of Bars, Plates, and Shells,” McGraw-
Hill, Inc., New York, 1975, p. 22.

PROBLEM: 

Find the buckling load and deflection mode for a clamped-clamped column.
 

ANALYTICAL SOLUTION:

Pcr = 4π2 EI / L2 = 39478.4 lb

Figure B2-1

B2: Instability of Columns S

GIVEN:

E = 30 x 106 psi

h = 1 in

L = 50 in

I = 1/12 in4

COMPARISON OF RESULTS:

Theory COSMOS/M

Pcr 39478.4 lb 39478.8 lb

L

EI

h

1 2 3 21

22

1 2 20

Y

X

P

Problem Sketch

Finite Element Model

P

Z
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ee 
List
TYPE:

Buckling analysis, beam element (BEAM3D).

REFERENCE: 

Brush, D. O., and Almroth, B. O., “Buckling of Bars, Plates, and Shells,” McGraw-
Hill, Inc., New York, 1975, p. 22.

PROBLEM: 

Find the buckling load and deflection mode for a clamped-free column.
 

ANALYTICAL SOLUTION:

Pcr = π2 EI / (4L2) = 2467.4 lb

Figure B3-1

B3: Instability of Columns S

GIVEN:

E = 30 x 106 psi

h = 1 in

L = 50 in

I = 1/12 in4

COMPARISON OF RESULTS:

Theory COSMOS/M

Pcr 2467.4 lb 2467.4 lb

Finite Element Model

1 2 3 21

22

1 2 20

Y

X

Z

Problem Sketch

L

EI

hP P
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ee 
List
TYPE:

Buckling analysis, shell element (SHELL4).

REFERENCE:

Timoshenko, and Woinosky-Krieger, “Theory of Plates and Shells,” McGraw-Hill 
Book Co., New York, 2nd Edition, p. 389.

PROBLEM:

Find the buckling load of a simply supported isotropic plate subjected to inplane 
uniform load p applied at x = 0 and x = a.
 

Figure  B4-1

B4: Simply Supported Rectangular Plate S

GIVEN: COMPARISON OF RESULTS:

E = 30,000 psi

ν = 0.3

h = 1 in

a = b = 40 in

p = 1 lb/in

Theory COSMOS/M

Pcr 67.78 lb 67.85 lb

NOTE: 

Due to double symmetry in geometry and loads, 
a quarter of the plate is taken for modeling.

Z

Y

Xh

b

a

P

P

Problem Sketch and Finite Element Model
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ee 
List
TYPE: 

Buckling analysis, shell element (SHELL3, SHELL6).

REFERENCE: 

Brush, D. O., and Almroth, B. O., “Buckling of Bars, Plates, and Shells,” McGraw-
Hill, Inc., New York, 1975, p. 139.

PROBLEM: 

Find the buckling load and deflection mode of a ring under pressure loading.
 

ANALYTICAL SOLUTION:

Using Donnell Approximations.

Pcr = 4EI / R3 = 26.667 lb/in

Figure B5-1

B5A, B5B: Instability of a Ring S

GIVEN:

E = 10 x 106 psi

R = 5 in

h = 0.1 in

b = 1 in

I = 0.001/12 in4

COMPARISON OF RESULTS:

Theory

COSMOS/M

SHELL3
SHELL6 
(Curved)

SHELL6 
(Assembled)

Pcr 26.667 lb 26.674 lb 26.648 lb -26.660 lb

Problem Sketch Finite Element Model

z

b

h

R

θ

Pcr
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ee 
List
TYPE:

Buckling analysis, truss (TRUSS2D) and beam (BEAM3D) elements.

REFERENCE: 

Timoshenko, S. P., and Gere, J. M., “Theory of Elastic Stability,” 2nd ed., McGraw-
Hill Book Co., New York, 1961, p. 45.

ANALYTICAL SOLUTION:

The classical results are obtained from:

P1cr = ATE Sin α Cos2α / (1 + (AT/AB) Sin3α)

P2cr = π2EIB / L
2

MODE SHAPES:

Figure B6-1

B6: Buckling Analysis of a Small Frame S

GIVEN:

L = 20 in 

AB = 4 in2

AT = 0.1 in2

E = EB = ET = 30E6 psi

IB = 2 in4

COMPARISON OF RESULTS:

Theory COSMOS/M

Pcr1 1051.392 lb 1051.367 lb

Pcr2 1480.44 lb 1481.20 lb

Mode Shape 1 Mode Shape 2
COSMOS/M Basic FEA System 4-7
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Figure B6-2

y

z

6

Truss

1

2

3

4

5

1

2

3

4

5

P

α  = 45
x

Problem Sketch and Finite Element Model

L
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ee 
List
TYPE: 

Buckling analysis, shell element (SHELL4 and SHELL6).

REFERENCE:

Brush, D. O., and Almroth, B. O., “Buckling of Bars, Plates, and Shells,” McGraw-
Hill, Inc., New York, 1975, p.29.

PROBLEM: 

Find the buckling load and deflection mode for the frame shown below.

 ANALYTICAL SOLUTION:

Pcr = 1.406π2EI / L2 = 55506.6 lb

Figure B7-1

B7A, B7B: Instability of Frames S

GIVEN:

E = 30 x 106 psi

h = 1 in

L = 25 in

I = 1/12 in4

COMPARISON OF RESULTS:

Theory

COSMOS/M

SHELL4
SHELL6 
(Curved)

SHELL6 
(Assembled)

Pcr 55506.6 lb 56280.8 lb 55364.9 lb 55732.1lb

Finite Element Model

h

Z

X

Y

Problem Sketch

L

L
P

Z

X

Y
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ee 
List
TYPE:

Buckling analysis, axisymmetric shell element (SHELLAX).

REFERENCE: 

Brush, D. O., and Almroth, B. O., “Buckling of Bars, Plates, and Shells,” McGraw-
Hill, Inc., New York, 1975, p. 164.

PROBLEM: 

Find the buckling 
load and deflection 
mode for a cylindrical 
shell that is simply 
supported at its ends 
and subjected to uni-
form lateral pressure.

GIVEN:

E = 10 x 106 psi

h = 0.2 in

R = 20 in

L = 20 in

ν = 0.3

ANALYTICAL SOLUTION:

B8: Instability of a Cylinder S

COMPARISON OF RESULTS: Theory COSMOS/M

Pcr 106 psi 113.97 psi

Finite Element Model

Y

X

R
Problem Sketch

h R

L

Figure  B8-1
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ee 
List
TYPE:

Buckling analysis, shell (SHELL4) and beam (BEAM3D) elements.

REFERENCE:

Timoshenko, S. P., and Gere, J. M., “Theory of Elastic Stability,” 2nd edition, 
McGraw-Hill Book Co., Inc., New York, p. 394, Table 9-16.

PROBLEM: 

A simply supported rectangular plate is stiffened by a beam of rectangular cross-
section as shown in the figure. The stiffened plate is subjected to inplane pressure at  
edges x = 0 and x = a. Determine the buckling pressure load.

COMPARISON OF RESULTS:

Figure  B9-1

B9: Simply Supported Stiffened Plate S

GIVEN: ANALYTICAL SOLUTION:

Where:

β = a/b    γ  = EIb / bD    D = E(hp)3/ 12(1-ν2)

Ab = bb x hb    δ = Ab / bhp

E = 30,000 kip/in2

ν = 0

hp = 1 in

a =  45.5 in

b = 42 in

bb = 0.42 in

hb = 10 in

Theory COSMOS/M Difference

Pcr 223.80 kip/in 232.53 kip/in 3.9%

Y

X

b

a

P

P

h b

Ph

Problem Sketch and Finite Element Model
bb
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ee 
List
TYPE: 

Buckling analysis, beam elements (BEAM2D).

REFERENCE: 

Timoshenko, S. P. and Gere J. M., “Theory of Elastic Stability,” McGraw-Hill Book 
Co., New York, 1961.
 

Figure  B10-1

B10: Stability of a Rectangular Frame S

GIVEN:

L = b = l00 in

A = 1 in2 

h = 1 in (beam cross section 
height)

I = 0.0833 in4

E = 1 x 107 psi

P = 100 lb

COMPARISON OF RESULTS:

Theory COSMOS/M

Pcr 1372.45 lb 1371.95 lb

ANALYTICAL SOLUTION:

Pcr = 16.47EI/L2 = 1372.4451 lb

Problem Sketch

P P

P P

L

Y

X

b

Finite Element Model

b/2

L/2

21

1

P

X

Y

Z

11
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Part 2   Verification Problems

ee 
List
TYPE: 

Buckling analysis, beam element (BEAM2D).

RFERENCE: 

Roark, R. J. and Young, Y. C., “Formulas for Stress and Strain,” McGraw-Hill, New 
York, l975, pp. 534.

PROBLEM: 

Find the critical load and mode shape for the stepped column shown below.

Figure B11-1

B11: Buckling of a Stepped Column S

GIVEN:

L = 1000 mm
A1 = 10,954 mm2

A2 = 15,492 mm2

E1 = E2 = 68,950 MPa
ν1 = ν2 = 0.3
I1 = 1 x 107 mm4

I2 = 2 x 107 mm4

P1/P2 = 0.5

COMPARISON OF RESULTS:

Theory COSMOS/M

Pcr 554.6 KN 554.51 KN

ANALYTICAL SOLUTION:

Pcr = 0.326π2E1I1 / (2L)2 = 554,600 N

                                          = 554.6 KN

Finite Element Model

1 2 3 11 21
Y

20

20

X

Z

21

Problem Sketch

L

P P

L

1

E   ,  A   ,  I   1 1 1E   ,  A   ,  I   2 2 2

2
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ee 
List
TYPE: 

Buckling analysis, composite shell element (SHELL4L).

REFERENCE: 

Jones, “Mechanics of Composite Material,” McGraw-Hill Book Co., New York, p. 
269.

PROBLEM: 

Find the buckling load for [45,-45,45,-45] antisymmetric angle-ply laminated plate 
under uniform axial compression p.

Figure B12-1

B12: Buckling Analysis of a Simply 
Supported Composite Plate

S

GIVEN:
a = b = 40 in

h = Σhi = 1 in

Ex = 400,000 psi

Ey = 10,000 psi

νxy = 0.25

Gxy = Gyz=Gxz=5,000 psi

p = 1 lb/in2

COMPARISON OF RESULTS:

Theory COSMOS/M

Pcr 334.0 lb/in 345.36 lb/in

ANALYTICAL SOLUTION:

Approximate solution is given by graph 
5-16 in the reference.

b

Problem Sketch and Finite Element Model

Z Y

h

P

P

a

X
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Part 2   Verification Problems

ee 
List
TYPE: 

Buckling analysis, beam element (BEAM2D).

REFERENCE: 

Timoshenko, S. P., and Gere, J. M., “Theory of Elastic Stability,” McGraw-Hill 
Book Co., New York, 1961, pp. 125-128.

GIVEN: 

b1 = 1 in

b2 = 4 in

b/b1 = (x/a)2

I1 = 1 in4

I2 = 4 in4

I1/I2 = 0.25 

L = 100 in

a = 100 in

E = 1 x 107 psi

h = 1 in

ANALYTICAL SOLUTION:

Pcr = 1.678EI2 / L
2 = 6712 lb

COMPARISON OF RESULTS:

The Critical Load:

B13: Buckling of a Tapered Column S

Theory COSMOS/M

Pcr 6712 lb 6718 lb

x

Finite Element Model

1 11
y

z

2

1

10

10

Ph

x

L a

b1

Pb 2

Problem Sketch

SIDE VIEW

PLAN

b x

Figure  B13-1
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ee 
List
TYPE:

Linear buckling analysis using the nonaxisymmetric buckling mode option 
(SHELLAX).

REFERENCE:

Sobel, L. H., “Effect of Boundary Conditions on the Stability of Cylinders Subject 
to Lateral and Axial Pressures,” AIAA Journal, Vol. 2, No. 8, August, 1964, pp 
1437-1440.

PROBLEM:

Find the buckling pressure for 
the shown  axisymmetric 
clamped-clamped shell.

GIVEN:

R = 1 in

ν = 0.3

L = 4 in

E = 107 psi

t = 0.01 in

MODELING HINTS:

The cylindrical shell is 
modeled with 20 uniform 
elements. The starting harmonic number for which the buckling load is calculated is 
set to 2. The minimum buckling load occurs at harmonic number 5 which 
corresponds to mode shape 4 since the program started from harmonic 2.

B14: Buckling of Clamped Cylindrical Shell 
Under External Pressure Using the 

Nonaxisymmetric Buckling Mode Option

S

Finite Element Model

1

2

3

20

19

21

x

y

2

1

20

Rt

L

CL

Problem Sketch

Figure  B14-1
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Part 2   Verification Problems
COMPARISON OF RESULTS:

Theory COSMOS/M

Harmonic Number 5 5

Critical Load 33.5 psi 35.0 psi
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ee 
List
TYPE:

Linear buckling analysis using the nonaxisymmetric buckling mode option 
(SHELLAX).

REFERENCE:

Timoshenko, S. P., and Gere, J. M., “Theory of Elastic Stability,” McGraw-Hill 
Book Co., 1961.

PROBLEM:

Find the buckling load for 
the simply-supported 
cylindrical shell shown in 
the figure below.

GIVEN:

R = 10 in

L = 16 in

ν (NUXY)= 0.3

E = 107 psi

t = 0.1 in

MODELING HINTS:

The cylindrical shell was modeled with 60 uniform elements. The starting harmonic 
number for which the buckling load is calculated was set to 1. The solution stopped 
at harmonic number 2 at which the minimum buckling load occurs. The number of 
maximum iterations for the eigenvalue calculations was set to 100.

B15A, B15B: Buckling of Simply-Supported 
Cylindrical Shell Under Axial Load

S

Finite Element Model

1

61

x

P

60

3

2
1

2

Y

60

Problem Sketch

L

R

t

CL

Figure  B15A and B15B
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Part 2   Verification Problems
COMPARISON OF RESULTS:

Harmonic
No.

Critical Load 

B15A (SHELLAX) B15B (PLANE2D)

Theory 2 6.05 x 104 lb/rad 6.05 x 104 lb/rad

COSMOS/M 2 6.07x 104 lb/rad 6.02x 104 lb/rad
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Index
A
axisymmetric 2-7, 2-29, 2-30, 2-

60, 2-62, 2-135, 2-141, 4-16
axisymmetric shell 2-29, 2-60, 4-

16

B
beam 2-16, 2-18, 2-35, 2-36, 2-

38, 2-43, 2-45, 2-53, 2-54, 2-63, 
2-65, 2-70, 2-80, 2-81, 2-83, 2-
85, 2-86, 2-111, 2-113, 3-5, 3-6, 
3-14, 3-15, 4-7, 4-12

beam and truss 2-41
beam elements 2-14, 2-16, 2-18, 

2-35, 2-36, 2-38, 2-43, 2-54, 2-
70, 2-80, 2-81, 2-83, 2-85

BEAM2D 1-3, 2-16, 2-18, 2-38, 
2-65, 2-71, 2-80, 2-81, 2-83, 2-
85, 2-111, 2-113, 4-12, 4-13, 4-15

BEAM3D 1-3, 2-14, 2-35, 2-36, 
2-41, 2-43, 2-45, 2-53, 2-54, 2-
63, 2-67, 2-70, 2-86, 3-5, 3-6, 3-
7, 3-14, 3-19, 4-2, 4-3, 4-4, 4-7, 
4-11

BOUND 1-3
Buckling analysis 1-2, 4-1, 4-2, 

4-3, 4-4, 4-5, 4-6, 4-7, 4-9, 4-10, 

4-11, 4-12, 4-13, 4-14, 4-15, 4-
16, 4-18

C
centrifugal loading 2-62, 2-63
composite shell 2-33, 2-47
composite solid 2-56
constraint 2-68, 2-70, 2-71, 2-73
constraint elements 2-73
constraint equations 2-68
coupled degrees of freedom 2-

129
coupled points 2-68
CPCNS 2-70
cross-ply laminated 2-33
cyclic symmetry 2-99, 2-100

E
elastic foundation 2-128
ELBOW 1-3, 2-25, 2-26, 2-130

F
fluid sloshing 3-23, 3-25, 3-27
Frequency (modal) analysis 1-2
frequency analysis 3-21, 3-23, 3-

30, 3-31, 3-32, 3-34
fundamental frequency 3-4, 3-5, 

3-17, 3-19, 3-20, 3-34, 3-35

G
GAP 1-3
gap elements 2-111, 2-113, 2-114
GENSTIF 1-3
gravity loading 2-130
Guyan reduction 3-32

L
linear static analysis 1-2, 2-1, 2-

29, 2-111, 2-113, 2-130
Linear static stress analysis 1-2
Linearized buckling analysis 1-2

M
MASS 1-3, 2-63, 3-3, 3-7
mass elements 2-63
Modal analysis 1-2
Mode shapes and frequencies 3-

3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-
10, 3-11, 3-12, 3-13, 3-14, 3-15, 
3-16, 3-17, 3-19, 3-20, 3-21, 3-
22, 3-23, 3-25, 3-27, 3-29

N
natural frequencies 3-3, 3-6, 3-8, 

3-9, 3-10, 3-11, 3-12, 3-13, 3-15, 
3-17, 3-21, 3-23, 3-25, 3-32
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Index   
O
orthotropic 2-33

P
p-element 2-106, 2-117
Piezoelectric 3-29
piezoelectric 3-29
PIPE 1-3, 3-8
plane strain 2-12, 2-131, 2-133, 2-

137
plane strain solid 2-103
plane stress 2-13, 2-106, 2-117, 2-

131
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2-53, 2-66, 2-71, 2-89, 2-95, 4-10
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